
Lattice algorithms – Exercises + Solutions

June 20th, 2017

Throughout we will consider the two-dimensional lattice generated by B = {b1, b2} with:

b1 =

(
144
0

)
, b2 =

(
89
1

)
. (1)

The corresponding lattice is defined as L = L(B) = {λ1b1 + λ2b2 : λ1, λ2 ∈ Z}. Observe
that these basis vectors are not very short or orthogonal. For instance b1 − b2 is also a
lattice vector, and has a smaller Euclidean norm than b1 and b2.

1. Gauss reduction

In two dimensions, Gauss reduction provides an efficient way to find the “best” basis of a
lattice. Given a basis {b1, b2}, this algorithm repeatedly applies the following two steps:

• Swap: If ‖b1‖ > ‖b2‖, then swap b1 and b2.

• Reduce: While ‖b2 ± b1‖ < ‖b2‖, replace b2 ← b2 ± b1.

Gauss reduction repeats the above two steps until no more progress can be made. A
Gauss-reduced basis contains a shortest (non-zero) vector as one of its basis vectors.

a) Perform Gauss-reduction on the basis B above to find a reduced basis B′.
Solution: Using Gauss reduction we obtain the basis B′ = {(8,−8), (13, 5)}.

b) Find a shortest non-zero vector in this lattice.
Solution: From B′ we can extract a shortest vector s = (8,−8).

c) Find a lattice vector at Euclidean distance at most 12 from the target t = (7, 21).
Solution: Trial and error should suffice to find a sufficiently close vector here. For
instance (5, 13) is a lattice vector, and lies at distance

√
4 + 64 < 12 from t.

d) Explain why a Gauss-reduced basis generates the same lattice as the input basis.
Solution: One way to do this is to prove that L(B) = L(B′), whenever B′ is ob-
tained from B through swaps and reductions. To prove this, it suffices to show that
a single swap leads to a basis for the same lattice, and a single reduction does not
change the generated lattice either.

Recall that a lattice vector can be represented in a basis by a pair (λ1, λ2) of co-
efficients. After a swap, the coefficients become (λ1, λ2) 7→ (λ2, λ1), and so any
vector representable in B with integer coefficients is also representable in B′ with
integer coefficients, and vice versa. Similarly a reduction corresponds to a mapping
(λ1, λ2) 7→ (λ1, λ2 ± λ1), and again (λ1, λ2) ∈ Z2 if and only if (λ1, λ2 ± λ1) ∈ Z2.
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2. Lattice enumeration

Lattice enumeration is a way to find all short vectors in a lattice, by exhausting the space
of all possible solutions. This method uses the Gram-Schmidt orthogonalization of a basis:

b∗1 = b1, b∗2 = b2 −
〈b1, b2〉
〈b1, b1〉

b1. (2)

Here 〈x,y〉 =
∑

i xiyi denotes the standard inner product.

a) Compute the Gram-Schmidt orthogonalization of the reduced basis B′ from 1a.
Solution: Starting from the reduced basis b1 = (8,−8) and b2 = (13, 5), we find

b∗1 = b1 = (8,−8) and b∗2 = b2 − 〈b1,b2〉〈b1,b1〉 b1 = (13, 5)− 64
128(8,−8) = (9, 9).

b) Show that if v = λ1b1 + λ2b2, then ‖v‖ ≥ |λ2| · ‖b∗2‖.
Solution: If v = λ1b1 + λ2b2 then also v = λ∗1b

∗
1 + λ2b

∗
2: the coefficient λ1 may

be different when representing v in this orthogonalized basis, but the coefficient for
b∗2 remains the same. Since b∗1 and b∗2 are orthogonal, we obtain a bound on ‖v‖ as
‖v‖ =

√
(λ∗1)

2 · ‖b∗1‖2 + λ22 · ‖b
∗
2‖2 ≥

√
λ22 · ‖b

∗
2‖2 = |λ2| · ‖b∗2‖.

c) Find all lattice vectors of norm at most 24.
(Hint: Find a bound on λ2, and then find all solutions for each choice of λ2.)
Solution: We know that |λ2| · ‖b∗2‖ ≤ ‖v‖ ≤ 24. Since ‖b∗2‖ =

√
92 + 92 > 12,

this leads to |λ2| < 2. Since λ2 is integer, this leads to λ2 ∈ {−1, 0, 1}, and due to
symmetry of the lattice, we only need to consider the cases λ2 = 0 and λ2 = 1.

For λ2 = 0, we are looking for points v = λ1 · (8,−8) with norm at most 24.
Since (8,−8) has norm approximately 11.31, we find solutions for |λ1| ≤ 2, namely
the five vectors {(0, 0),±(8,−8),±(16,−16)}.

For λ2 = 1, we are looking for lattice points of the form v = (13, 5) + λ1(8,−8),
which leads to sufficiently short vectors for λ1 ∈ {−2,−1, 0, 1} corresponding to the
four short vectors {(−3, 21), (5, 13), (13, 5), (21,−3)}. For λ2 = −1 we find these so-
lutions with a minus sign, i.e. {(3,−21), (−5,−13), (−13,−5), (−21, 3)}. Altogether,
this leads to the 13 short vectors mentioned above.

d) Describe what happens if we try the approach from 2a-c with the original basis B.
Solution: Since the original basis was longer and less orthogonal, enumeration
becomes more expensive as described during the lecture. In this particular case, the
vector b∗2 would be equal to (0, 1) of norm 1, and so the bound on the coefficient λ2
in terms of this non-reduced basis would be |λ2| ≤ 24. If we tried the same approach,
we would have spent much more time checking each possible choice λ2 for solutions.

e) Suppose t ∈ R2 with ‖t‖ ≤ 12. Argue that one of the vectors found in 2c must be a
closest lattice vector to t.
Solution: Any vector not in this list has norm larger than 24, and therefore due to
the triangle inequality has distance more than 12 from t. Since 0 is a lattice vector
at distance at most 12 from t, such a long vector cannot be a closest vector.

f) Find the exact closest lattice vector to t = (7, 21).
Solution: From 1c we had a close vector (5, 13). Considering t′ = (7, 21)− (5, 13) =
(2, 8), this vector has norm less than 12, and has a closest vector in the list from 2c.
Checking all vectors, we find (5, 13) to be the closest to (2, 8), at distance

√
34 < 6.

The closest vector to (7, 21) is therefore our initial guess (5, 13) plus the exact closest
vector to t′, (5, 13) leading to (10, 26) at distance

√
34.
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3. The Voronoi cell of a lattice

The Voronoi cell of a lattice L ⊂ Rn is defined as the region V ⊂ Rn of points closer to
the origin than to any other lattice point:

V =
{
x ∈ Rn : ‖x‖ ≤ ‖x− v‖ for all v ∈ L

}
. (3)

The Voronoi relevant vectors are defined as those lattice vectors r ∈ L for which V and
the shifted Voronoi cell V + r share a non-empty boundary1. For the 2D lattice from the
previous exercises, the six relevant vectors are ±(8,−8),±(13, 5),±(5, 13).

a) Given a vector t ∈ V, what is the closest lattice vector to t?
Solution: By definition, the Voronoi cell V contains all vectors which are closer to
the origin than to any other lattice vector, so the origin is the closest lattice vector.

b) Given a vector t ∈ R2, describe an algorithm for finding a closest lattice vector to t
using the Voronoi relevant vectors, and prove this algorithm terminates.
(Hint: “Reduce” t with the relevant vectors.)

c) Use this method to verify your answer from 2f.
Solution: Given the list of the relevant vectors, we can iteratively “reduce” a tar-
get vector t with the relevant vectors (replacing t by t′ = t ± r if t ± r is shorter
than t) until the reduced target cannot be further reduced with any of the relevant
vectors. From this one can then trace back to the closest vector of the original vector.

To prove that this algorithm terminates, note that since everything is discrete, the
number of intermediate values the norm of the target can take is finite (assuming
reductions are only done with a strict inequality). The algorithm therefore has to
terminate at some point, at which point no more reductions can be done.

4. Lattice basis reduction and relation finding

Lattice basis reduction can also be used for other purposes, such as obtaining (approxi-
mate) relations between numbers of a given form. As an example, using Gauss reduction
we have reduced the basis B = {b1, b2} to B′ = {b′1, b′2} with b1, b2, b

′
1, b
′
2 given below.

b1 =

100000
1
0

 , b2 =

314159
0
1

 , b′1 =

 −33
−355
113

 , b′2 =

887
22
−7

 . (4)

a) Express b′1 and b′2 in terms of the basis B, and use this to construct two equations
of the form λ1 · 100000 + λ2 · 314159 = λ3 with “small” λ1, λ2, λ3.
Solution: The easiest way to extract the coordinates of B′ in terms of B is to look
at the second and third coordinates, which for B are unit vectors. It immediately
follows that b′1 = −355 · b1 + 113 · b2 and b′2 = 22 · b1 − 7 · b2. Looking at the first
coordinates of B′ expressed in terms of B we then find:

−33 = −355 · 100000 + 113 · 314159 (5)

887 = 22 · 100000− 7 · 314159 (6)

1Formally, V + r =
{
x ∈ Rn : ‖x− r‖ ≤ ‖x− v‖ for all v ∈ L

}
.

3



b) Rewrite these equations to obtain rational approximations of π.
Solution: Dividing both equations by 100000 and the coefficient of 314159, and
rewriting the terms, we obtain the two equations

3.14159− 355

113
=

−33

11300000
(7)

3.14159− 22

7
=
−887

700000
(8)

Since π ≈ 3.14159, and the right hand sides are (relatively) small, we obtain the
rational approximations π ≈ 355

113 and π ≈ 22
7 .

c) Perform Gauss reduction on the basis B = {b1, b2} given by

b1 =

100000
1
0

 , b2 =

9740909
0
1

 . (9)

Solution: Applying Gauss reduction, we find the reduced basis B′ = {b′1, b′2} with
b′1 = (2, 2143,−22) and b′2 = (4545,−487, 5). The first vector b′1 is a shortest vector
in this lattice.

d) Use the previous reduced basis to obtain Ramanujan’s approximation of π4.
Solution: Using similar techniques as above, this can ultimately be rewritten as
97.40909 ≈ 2143

22 (with an explicit error term). Since π4 ≈ 97.40909, we obtain the
rational approximation π4 ≈ 2143

22 previously obtained by Ramanujan.

4


