
0
1
1
0
0
1
1
1
0
0
0
1
0
1
0
0
0
0
0
0
0
1
1
1
0
1
0
1
1
0
0
0
1

1
0
0
1
0
0
1
0
1
0
1
1
1
0
0
1
1
1
0
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
0

0
1
1
0
0
1
0
1
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
1
0
1

0
1
1
1
0
0
1
1
1
1
1
1
0
1
0
1
0
0
1
0
1
1
0
0
1
0
0
0
0
1
1
0
0
0
1
1
0
0
0
0

1
1
1
0
1
1
1
1
0
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0

1
1
1
0
0
1
1
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
1
0
1

0
1
1
1
0
0
1
0
1
1
1
1
1
1
1
0
1
0
1
0
0
1
0
0
1
0
0
1
0
1
1
0
0
0
1
1
0
1
0
1

0
1
1
1
0
0
1
0
1
1
1
1
0
1
0
0
0
0
1
0
1
1
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
1
0
1

1
1
1
0
0
1
1
1
1
0
1
0
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1
0
1
1
0
0
1
1
0
0
0
0

0
0
1
1
1
0
0
1
0
1
1
1
1
0
1
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
1
0
1

1
0
1
0
0
1
1
1
1
1
0
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
1

1
0
1
1
1
0
1
0
1
1
1
1
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
1
1
0
1

1
0
1
1
1
1
0
0
1
0
1
1
1
1
1
1
1
1
0
0
1
0
1
1
0
0
1
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0

0
0
1
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
0
0
1

1
0
0
1
0
1
1
0
0
0
1
1
0
0
0
1
1
0
1
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
1

0
0
1
1
1
1
1
1
0
0
0
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

1
0
0
1
0
1
0
1
1
1
1
1
1
1
0
1
1
1
0
0
1
0
1
0
1
0
0
0
0
1
0
1
1
0
0
0
1
1
0
1
0
0

0
1
0
1
1
0
1
1
1
1
0
1
1
0
0
0
1
1
0
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

0
1
1
1
0
0
1
1
0
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1

0
0
0
1
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
1
0
0
0
1
1
0
0
0
1

1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
0
1
0
0

0
1
1
1
0
0
1
1
1
0
0
0
0
1
1
0
0
1
1
1
1
0
0
1
0
1
1
1
0
0
0
0
0
1
0
1
1
0
0
1
1
0
1
1
0

1
1
0
1
1
0
0
0
1
0
0
1
0
0
0
1
1
0
0
0
0
0
1
1
0
1
0
0
0
1
1
0
1
0
1

1
0
1
0
1
1
0
0
1
1
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0

1
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
1
0
0

1
0
1
1
1
1
0
1
1
0
0
1
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
1
1
0
1
1
0
0
0
1
1
0
0
0
1

0
1
0
1
0
1
1
0
0
1
1
1
0
1
1
0
0
0
1
0
1
0
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
1

1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
1
0
1
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0

1
1
0
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
0
0

0
0
1
0
1
0
0
1
1
1
1
0
1
0
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
0
0
0
1
1
0
1
1
1

1
0
0
1
1
1
0
1
1
0
0
1
1
1
1
1
1
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0

0
0
1
0
0
1
0
1
1
1
1
1
1
0
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0

0
0
1
0
1
1
0
1
0
1
1
1
0
0
1
1
0
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
0
0
0

1
1
1
0
1
0
1
1
1
0
0
1
1
1
1
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

1
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0

0
1
0
1
1
0
1
1
1
0
0
1
1
0
1
0
1
1
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
0
0
1

1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
1
0
1

0
1
1
1
1
0
0
1
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
1

0
0
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
1

0
1
0
1
1
1
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
0

1
1
1
0
0
1
0
1
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
0
1
0
0
0
0
0
1
0
1
1
0
0
0
1
1
0
0
0
1

0
1
0
1
1
1
1
1
1
1
1
0
0
1
0
1
1
0
0
1
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

1
0
1
0
1
1
0
1
0
1
1
1
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
1
0
1

1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0

1
1
1
0
1
1
1
0
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
0

0
1
0
1
1
0
1
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
1

0
1
0
1
1
0
1
0
1
1
0
0
1
0
0
0
1
1
1
0
0
1
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

1
1
0
1
1
0
1
1
0
1
0
1
1
1
1
0
1
0
1
0
0
0
1
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1

1
1
1
0
1
1
1
1
0
1
1
0
1
1
0
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
1
0
1
1
1
0
0
0
1
1
0
0
0
1

1
0
1
0
0
1
0
0
1
1
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
0
0
0
1

0
1
0
0
1
1
1
0
1
0
1
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
1
0
0
0
1
1

1
0
0
0
1
0
0
0
0
1
1
1
0
0
0
1
0
1
1
1
1
1
0
0
0
1
1
0
1
0
0

0
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
1
1
0
1
1
0
0
0
1
1
0
0
0
1

1
1
1
0
0
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
0
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
0
1

1
0
0
1
0
1
0
0
1
0
1
1
0
1
1
1
1
0
1
0
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
1
1
1

1
0
0
1
0
1
0
1
1
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

0
0
1
0
1
1
1
1
1
0
0
1
1
0
1
0
0
1
0
0
1
0
1
1
0
0
0
1
1
0
0
0
0

1
1
1
0
1
1
1
1
0
0
1
0
1
1
1
0
0
1
1
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

1
1
1
0
1
1
0
1
0
0
1
0
1
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
0
1
0
0

1
0
1
1
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
0
1

1
1
1
0
1
1
0
1
1
0
1
1
1
1
1
0
1
1
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
1
1
0
0
0
1

1
0
0
1
0
1
1
0
1
1
1
1
0
1
0
1
0
0
1
0
1
1
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1

0
1
1
1
0
0
1
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
0

1
0
0
1
0
1
1
0
1
0
1
1
1
0
0
1
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
1

1
1
1
0
0
1
1
1
0
0
1
1
0
1
1
1
1
1
1
0
0
0
1
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0

0
1
1
0
0
1
0
1
1
1
1
0
0
0
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
0
0
1
0
0
0
1

1
0
1
1
0
1
0
1
1
0
1
0
1
0
0
0
0
0
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1

1
1
1
0
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
1
1
0
0
0
1

1
1
0
0
1
0
1
0
1
1
0
0
1
1
0
1
1
0
0
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
0

1
1
1
0
0
1
0
1
1
0
1
1
1
0
1
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

0
0
0
0
1
1
1
0
1
0
1
1
1
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
0

0
0
1
0
1
1
0
1
1
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
0
0
0
0

0
1
0
1
0
0
1
0
1
1
1
0
1
1
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1

1
1
0
0
1
0
1
1
0
1
0
1
0
1
0
0
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0

1
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0

1
1
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
1
0
0
0
1

1
0
1
1
0
1
0
1
1
0
1
1
1
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
1

0
1
1
1
0
0
1
0
1
1
1
1
1
1
1
0
0
0
1
0
1
1
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

0
0
1
1
1
0
1
1
1
0
1
0
0
1
1
1
1
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
0
0
0

1
1
1
0
1
1
0
1
1
0
1
0
1
0
1
0
0
1
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
1
1
0
0
0
1

Search problems in cryptography
From fingerprinting to lattice sieving

Thijs Laarhoven

Copyright © Thijs Laarhoven
E-mail: mail@thijs.com
Website: www.thijs.com

First edition December 2015

A catalogue record is available from the Eindhoven University of Technology Library.

This research is supported by a DIAMANT grant for the project Security of Lattice-Based
Cryptosystems (SLaBaC). DIAMANT is funded by the Netherlands Organization for Scien-
tific Research (NWO).

Printed by Gildeprint Drukkerijen, Enschede, The Netherlands

ISBN-10: 90 386 4021 8
ISBN-13: 978 90 386 4021 1
NUR: 919

The top half of the cover illustrates a binary collusion-resistant fingerprinting code de-
signed against four colluders, where red (green) columns correspond to fingerprints as-
signed to guilty (innocent) users. The bottom half depicts several steps in lattice sieving
using hyperplane locality-sensitive hashing, where ‘nearby’ (‘distant’) lattice points to the
blue target point are highlighted in red (green). Random vertical shifts in the fingerprint-
ing code as well as fading of the colors have been added for aesthetic reasons.

Search problems in cryptography
From fingerprinting to lattice sieving

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een commissie
aangewezen door het College voor Promoties, in het openbaar te verdedigen

op dinsdag 16 februari 2016 om 16:00 uur

door

Thijs Martinus Maria Laarhoven

geboren te Veldhoven

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotie-
commissie is als volgt:

voorzitter: prof.dr. J. de Vlieg
1e promotor: prof.dr. T. Lange
copromotor(en): dr. B.M.M. de Weger

dr. B. Škorić
leden: prof.dr. D.J. Bernstein

dr. T. Furon (INRIA Rennes, France)
prof.dr. D. Micciancio (UC San Diego, USA)
prof.dr. D. Stehlé (ENS Lyon, France)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Acknowledgments

This thesis, concluding four years of research at the Coding and Crypto group at the
Eindhoven University of Technology, would not have been possible without the help and
support of those around me.

First, I would like to express my deepest gratitude to my supervisor Benne de Weger.
Already in 2009 we started our collaboration when you supervised me for my bachelor’s
project. Even though I had no idea what I was doing, you gave me the freedom to do
whatever I wanted to do, and you were there to help me whenever I got stuck. Also for
my master’s project and my PhD research I could always rely on you to help me with any
problems I had, while at the same time you encouraged me to become an independent
researcher. Although I think your excellent guidance and supervision have made me a
better researcher over the years, I doubt I will ever match the mathematical precision and
rigor with which you work; often when I thought I had a nice result and double-checked
the formulas several times, I would be a bit worried that when showing the analysis to
you, you would find a mistake somewhere. On the other hand, if you could not find a
mistake, I could rest assured that the result was absolutely correct. Thank you very much
for your excellent guidance and support.

Next, I gratefully acknowledge the help of Boris Škorić. Our joint efforts on collusion-
resistant fingerprinting date back to 2010, when I started my master’s project on this
topic. Since then we have had countless animated discussions on different aspects of
fingerprinting, ranging from the bigger picture to small details which we were struggling
to understand. I could always talk to you whenever I needed help, and you especially
impressed me with the ease with which you dealt with long, complicated summations,
integrals, and expectations, which unfortunately appear quite often in the analysis of
fingerprinting. Hopefully you will also be able to enjoy this thesis, even though in the
first part I assumed that q = 2 from the start – let’s just say that studying larger alphabets
is left as an open problem for others to work on.

Third, I would like to thank my promotor Tanja Lange. Even though we have had
some disagreements in the past, you always supported me in getting the most out of
these four years of research. You encouraged me to get to know as many people as
possible, building a large network, and you stimulated me to travel around the world
to attend conferences and workshops, even though sometimes that meant you had to
go to considerable lengths to find funding for all these trips. I also greatly appreciate
the efforts you put into proofreading this entire thesis in these last few months, finding
mistakes which no one had found before.

Finally I would like to thank the other committee members Daniel J. Bernstein, Teddy
Furon, Daniele Micciancio, Damien Stehlé, and Jakob de Vlieg for being part of the PhD
committee, and for agreeing to perform all the duties that come with this, such as re-
viewing the thesis. My thanks also go to Arjen K. Lenstra, Artur Mariano, Alexander May,
Michele Mosca, Pierre Moulin, Michael Naehrig, and Damien Stehlé, for hosting visits
to research institutes around the world. I also would not have gotten this far without
the help of my co-authors, which in addition to some of the people mentioned above
are Alexandr Andoni, Anja Becker, Christian Bischof, Jeroen Doumen, Léo Ducas, Nicolas
Gama, Piotr Indyk, Jan-Jaap Oosterwijk, Joop van de Pol, Ilya Razenshteyn, Peter Roelse,
and Ludwig Schmidt. Thank you all for these fruitful collaborations.

For doing good research, a good working environment is necessary to stay focused
and motivated. I am very grateful to my (former) office mates Jan-Jaap, Meilof, and
Niels for discussions about everything and nothing, and for allowing me to distract you
whenever I did not feel like working. Jan-Jaap, it was really a pleasure working with
you, and hopefully I will soon see you on the stage as well. Meilof, I never thought
you would consider working for an Amsterdam-based company [Maa93, Vee12, Vee14],
but nevertheless I hope you and your bananas will be accepted and appreciated there as
much as you were at the TU/e. Niels, I hope that you can finally get some work done on
Goldilocks pebbles and polynocchio now that I am gone.

Next, I would like to thank Berry for the endless conversations about tennis, pebbles,
tennis, HIMMO [GMGPG+14], PSV, and of course tennis. I am also thankful to my other
colleagues Andreas, Chitchanok, Christine, Gustavo, Jan-Willem, Putranto, Ruben, Ruud,
Tony, as well as my former colleagues Craig, Henk, Jens, Peter, Relinde, Sebastiaan, and
Wil, for creating a great atmosphere in the group. Thanks to Alessandro, Chiel, Guus,
Jacob, Jesper, Michiel, and Mykola, for the occasional chess lunch, and for representing
the TU/e at the Dutch company team chess championships each year. Hopefully one day
the title will return to Eindhoven. Special thanks finally go to our secretaries Jolande and
in particular Anita for always being there for us, and supporting us in every way possible.
Especially after visiting universities abroad and having to deal with secretaries there, I
realize how important it is to have good secretaries, and how lucky we are to have you.

Last but certainly not least, I would like to thank my friends and family for their
unconditional love and support. Needless to say, without you none of this would ever
have been possible. Thank you for everything!

Eindhoven, December 2015

Thijs Laarhoven

Contents

Introduction 1

Part I: Finding colluders in fingerprinting 5

Chapter 1: Collusion-resistant fingerprinting codes 7

Chapter 2: Limitations of symmetric decoding 15

Chapter 3: Non-adaptive fingerprinting capacities 23

Chapter 4: Non-adaptive decoding schemes 39

Chapter 5: Sequential decoding schemes . 57

Chapter 6: Applications in group testing . 73

Chapter 7: Conclusions and open problems 87

Part II: Finding nearby vectors in lattice sieving 91

Chapter 8: Sieving for shortest vectors in lattices 93

Chapter 9: Limitations of leveled sieving . 99

Chapter 10: Hyperplane locality-sensitive hashing 113

Chapter 11: Hypercone locality-sensitive hashing 135

Chapter 12: Cross-polytope locality-sensitive hashing 145

Chapter 13: Hypercone locality-sensitive filtering 159

Chapter 14: Effects of quantum search . 179

Chapter 15: Conclusions and open problems 191

Summary 195

Curriculum Vitae 197

Bibliography 199

I Finding colluders in fingerprinting 5

1 Collusion-resistant fingerprinting codes 7
1.1 Problem description . 7
1.2 The bias-based framework . 8
1.3 Searching for two colluders . 11
1.4 Searching for more colluders . 12
1.5 Research questions and outline . 14

2 Limitations of symmetric decoding 15
2.1 Overview . 15
2.2 Bias distributions in the symmetric Tardos scheme 16
2.3 Discrete Gauss–Legendre distributions 18
2.4 Discrete arcsine distributions . 21
2.5 Estimating code lengths . 22

3 Non-adaptive fingerprinting capacities 23
3.1 Overview . 23
3.2 Simple capacities . 25
3.3 Joint capacities . 32
3.4 Arbitrary attacks . 37

4 Non-adaptive decoding schemes 39
4.1 Overview . 39
4.2 Simple decoders . 40
4.3 Joint decoders . 44
4.4 Arbitrary attacks . 48

5 Sequential decoding schemes 57
5.1 Overview . 57
5.2 The sequential Tardos scheme . 58
5.3 The sequential Wald scheme . 60
5.4 Tardos vs. Wald: A comparison . 65

6 Applications in group testing 73
6.1 Overview . 73
6.2 Non-adaptive group testing capacities 74
6.3 Non-adaptive decoding schemes . 83
6.4 Sequential decoding schemes . 84

7 Conclusions and open problems 87

II Finding nearby vectors in lattice sieving 91

8 Sieving for shortest vectors in lattices 93
8.1 Problem description . 93
8.2 The sieving framework . 95
8.3 Searching for nearby vectors . 97
8.4 Research questions and outline . 98

9 Limitations of leveled sieving 99
9.1 Overview . 99
9.2 The 1-level sieve of Nguyen and Vidick 100
9.3 The 2-level sieve of Wang–Liu–Tian–Bi 101
9.4 The 3-level sieve of Zhang–Pan–Hu . 104
9.5 High-level sieving . 107

10 Hyperplane locality-sensitive hashing 113
10.1 Overview . 113
10.2 The locality-sensitive hashing (LSH) framework 114
10.3 Hyperplane locality-sensitive hashing 116
10.4 The Nguyen–Vidick sieve with hyperplane LSH 117
10.5 The GaussSieve with hyperplane LSH 127

11 Hypercone locality-sensitive hashing 135
11.1 Overview . 135
11.2 Hypercone locality-sensitive hashing . 136
11.3 The Nguyen–Vidick sieve with hypercone LSH 138
11.4 The GaussSieve with hypercone LSH . 144

12 Cross-polytope locality-sensitive hashing 145
12.1 Overview . 145
12.2 Cross-polytope locality-sensitive hashing 147
12.3 The Nguyen–Vidick sieve with cross-polytope LSH 149
12.4 The GaussSieve with cross-polytope LSH 150
12.5 The ideal GaussSieve with cross-polytope LSH 152

13 Hypercone locality-sensitive filtering 159
13.1 Overview . 159
13.2 The locality-sensitive filtering (LSF) framework 160
13.3 Hypercone locality-sensitive filtering . 163
13.4 The Nguyen–Vidick sieve with hypercone LSF 173
13.5 The GaussSieve with hypercone LSF . 178

14 Effects of quantum search 179
14.1 Overview . 179
14.2 Quantum search speed-ups for sieving 181
14.3 Other algorithms . 187

15 Conclusions and open problems 191

Introduction

This dissertation consists of two parts. First each part will be described separately, and
then common ground in the two parts will be discussed.

Part 1: Finding colluders in fingerprinting

Collusion-resistant fingerprinting is a technique to protect copyrighted digital content
against piracy. Fingerprints are added to the content that uniquely link different copies
to different users, so that pirates who leak or share their copy with others can be traced
and dealt with. Defending against single pirates is relatively easy, but when many pirates
collude and mix their unique copies to form a pirate copy with a mixed fingerprint, it
becomes much harder to track down who was responsible for making this copy. With so-
called collusion-resistant fingerprinting codes, we can make sure that even such advanced
pirate attacks will not allow the traitors to get away with their actions.

Part 1 of this thesis focuses on theoretical improvements to collusion-resistant finger-
printing, that may have a practical impact as well. Can we improve existing schemes even
further? Can we design other schemes which work even better against large collusion at-
tacks? And can these schemes be deployed efficiently in practice? Ultimately, the goal of
the first part of this thesis is to obtain a better understanding of fingerprinting codes, con-
necting the fingerprinting problem to various well-studied problems and solutions from
other fields of research, and to find improvements to existing schemes that may be useful
in practice as well. This is done over the course of seven chapters as follows.

• Chapter 1 describes preliminaries on fingerprinting, explaining and motivating the
problem, describing the mathematical model that we consider, and describing no-
tation that we will use throughout the first part. This chapter also states research
questions which we aim to answer in the subsequent chapters.

• Chapter 2 examines the best known scheme before this work, and whether it can be
improved without modifying the decoder. This is based on joint work with Benne
de Weger, published at IH&MMSec 2013 [LdW13].

• Chapter 3 discusses slightly simplified attack models, analyzing how hard it is to
solve these easier problems, and what these results tell us about the general model.
These results were published in the proceedings of IH&MMSec 2014 [Laa14] and
in the IEEE Transactions on Information Forensics and Security [Laa15a].

2 INTRODUCTION

• Chapter 4 looks at practical schemes for the same simplified models, and how
these results can be applied in the general fingerprinting problem as well, to obtain
a better performance than with the schemes considered in Chapter 2. These results
were published in the proceedings of IH&MMSec 2014 [Laa14] and in the EURASIP
Journal on Information Security [Laa16].

• Chapter 5 considers a variant of the standard model, where the pirates output
their mixed pirate copy in real-time and the tracer may use this information to
adjust the scheme and trace the pirates faster. These results appeared at IH&MMSec
2015 [Laa15b], with parts coming from papers published at WIFS 2013 [Laa13a]
and in the IEEE Transactions on Information Theory [LDR+13].

• Chapter 6 discusses applications of these results outside fingerprinting, showing
that these contributions also improve upon previous results in the field of group
testing. These results appeared at Allerton 2013 [Laa13b] and in various other
papers mentioned above [Laa14,Laa15a,Laa15b].

• Chapter 7 finally concludes the first part with an overview of answers to the re-
search questions, the most important results, and open problems that still remain.

Other papers on this topic co-written by the author, which are not covered in this
thesis, appeared at WIFS 2012 [LOD12], SPIE Electronic Imaging 2014 [ODL14], and in
Designs, Codes and Cryptography [LdW14]1.

Part 2: Finding nearby vectors in lattice sieving

Lattice-based cryptography is a recent, popular line of research in cryptography, fo-
cusing on the use of lattices to design primitives that facilitate secure communication
between two or more parties, in the presence of an adversary. Lattice-based cryptogra-
phy is only secure if the underlying “hard problems” are computationally hard to solve,
and one of these problems is the shortest vector problem: find a shortest non-zero vector
in a high-dimensional lattice, given a description of this lattice. Currently sieving is the
fastest known method for solving this problem in high dimensions, and improving sieving
algorithms would immediately impact the estimated computational hardness of finding
shortest vectors, and thus the estimated security of lattice-based cryptographic primitives.

Lattice sieving algorithms all follow the same principle: given the description of a lat-
tice, we can easily generate many “long” lattice vectors, and given sufficiently many long
lattice vectors, we can combine them to find shorter lattice vectors. By first generating a
long list of lattice vectors, and then combining them appropriately, we ultimately hope to
find a shortest lattice vector in our list as well. The computationally most intensive part of
the algorithm consists in finding pairs of vectors which can be combined to obtain shorter
lattice vectors. What is commonly done in practice now is looking at all pairs of vectors,
and seeing if they can be combined. In many cases two vectors cannot be combined, but
going through all pairs guarantees that we will find all good pairs.

Part 2 of this thesis considers more sophisticated and faster methods for finding pairs
of vectors which can be combined in a useful way, which ultimately corresponds to faster
methods for finding nearby vectors in high-dimensional spaces. The focus is on theoretical

1Both [LdW14] and [LDR+13] are the result of previous work done during the author’s final Masters project.

INTRODUCTION 3

improvements for high dimensions, which may be useful in practice as well. Can we find
nearby vectors faster than with a naive linear search, using known techniques from the
literature? Can we perhaps improve upon the literature on finding nearby vectors, so
that we obtain even faster algorithms in high dimensions? And how do different methods
compare in practice, when the dimension is not that high? The goal is to obtain a better
understanding of sieving and its connection with other areas of research, and to find
theoretical improvements to existing sieving algorithms which may be relevant in practice
as well. This is done over the course of eight chapters as follows.

• Chapter 8 describes preliminaries on lattices and lattice sieving, introducing basic
sieving algorithms, and describing notation that will be used throughout the second
part of this thesis. At the end of this chapter we state the research questions that
are studied in the next chapters.

• Chapter 9 considers the fastest sieving algorithms in high dimensions prior to this
work, and studies whether a further modification to one of these methods will lead
to even better results. This chapter is based on previously unpublished work.

• Chapter 10 examines the combination of sieving with an efficient technique from
the nearest-neighbor literature, leading to both theoretical and practical improve-
ments in moderate and high dimensions. These results previously appeared in the
proceedings of Crypto 2015 [Laa15c].

• Chapter 11 looks at a different, recent method from nearest-neighbor literature,
and how this leads to further theoretical improvements in high dimensions when
combined with sieving. This is based on joint work with Benne de Weger, and these
results previously appeared at Latincrypt 2015 [LdW15].

• Chapter 12 studies a practical improvement over previous nearest-neighbor meth-
ods, and shows how these results apply to sieving on (ideal) lattices. This is based
on joint work with Alexandr Andoni, Piotr Indyk, Ilya Razenshteyn, and Ludwig
Schmidt, which appeared at NIPS 2015 [AIL+15], and on joint work with Anja
Becker, which is currently under review [BL15a].

• Chapter 13 studies a new direction in high-density nearest-neighbor searching,
leading to further theoretical and practical improvements over previous results.
This is based on joint work with Anja Becker, Léo Ducas, and Nicolas Gama, and
these results will appear in the proceedings of SODA 2016 [BDGL16].

• Chapter 14 investigates the effects of quantum algorithms on the computational
complexity of lattice sieving, showing how security parameters should be adjusted
to account for quantum attacks. This is based on joint work with Michele Mosca
and Joop van de Pol, and these results appeared at PQCrypto 2013 [LMvdP13] and
in Designs, Codes, and Cryptography [LMvdP15].

• Chapter 15 finally concludes with an overview of the results, answers to the re-
search questions, and possible directions for future research.

Other papers on this topic co-written by the author, the contents of which are not
covered in this thesis, appeared at ICPP 2015 [MLB15] and as a preprint [LvdPdW12].

4 INTRODUCTION

Common themes

Although the two topics of this thesis are very different and at first sight completely
unrelated, there are some common themes which appear in both parts of the thesis.

Searching for special elements using circumstantial evidence. The most obvious
similarity between these problems is that we are searching a large universe of many ele-
ments (legitimate users in fingerprinting, list vectors in lattice sieving) for a small subset
of special elements (pirates in fingerprinting, nearby vectors in lattice sieving). In both
cases, the proposed methods to solve these problems make use of circumstantial, indirect
evidence rather than direct, hard evidence to conclude whether an element is special or
not (accusation scores in fingerprinting, hash collisions in lattice sieving).

Randomized algorithms and average-case analyses. Closely related to the use of
circumstantial evidence is the probabilistic nature of solutions proposed in both parts of
the thesis. Many algorithmic problems become much easier if a correct solution only
has to be found with high probability, rather than guaranteeing that the algorithm always
outputs a correct solution, and this idea is also applied in both parts. Rather than focusing
on the worst-case costs of these algorithms under worst-case inputs, we focus on average-
case analyses, and allow for small errors to be made.

Divide and conquer. A general theme in various algorithmic applications is divide
and conquer, where a large problem is partitioned into small subproblems (divide) which
are then tackled individually (conquer). In fingerprinting this technique appears as the
simple but strong interleaving attack, where the pirates mix their copies in divide-and-
conquer fashion, but also in the score-based framework of dealing with each user and
segment separately, and combining these results to solve the larger problem.2 In the new
lattice sieving techniques, this idea is prominently present in nearest-neighbor searching,
as most of these methods are essentially a high-dimensional application of divide-and-
conquer: partition the space in regions, and solve the problem of finding nearby vectors
in each of these regions separately.

Connecting the dots. Sometimes completely new ideas must be invented to improve
upon existing solutions, but in many cases combining existing techniques from different
fields already leads to significant improvements. In the first part, solutions for fingerprint-
ing are found by applying tools from most notably information theory and hypothesis
testing literature to fingerprinting, and in the second part new solutions are obtained by
combining lattice sieving with nearest-neighbor searching and quantum algorithms. We
provide feedback to these areas as well, by improving upon state-of-the-art techniques in
group testing (Chapter 6) and nearest-neighbor searching (Chapters 12 and 13).

Asymptotic analyses with practical applications. Finally, in both parts we focus on
large-parameter asymptotics (large collusion sizes in fingerprinting, high dimensions in
sieving), but we always keep in mind what are the practical applications of these tech-
niques. Theoretical improvements which are only better in the asymptotic limit are not
very useful, and so we also focus on the practicability of these results. In fingerprint-
ing, we present explicit and efficiently-computable encoders and decoders, and in lattice
sieving we support the claimed speed-ups with experimental results.

2Certain fingerprinting schemes make even more explicit use of this idea [FT01,LOD12].

PART I

FINDING COLLUDERS IN

FINGERPRINTING

CHAPTER 1

Collusion-resistant fingerprinting codes

1.1 — Problem description

Digital content. Over the past few decades, there has been an enormous increase
in the use of digital data. Think of music, videos, software; a whole movie can now
be encoded by a long (virtual) string of bits, which can then be stored and played on a
smartphone. To watch a movie, you do not even have to go to the store anymore to buy a
copy; you can just connect to the internet, purchase a digital copy of the content from an
authorized reseller, download it to your local machine, and play the file on your computer
or TV. This is both convenient for the customer (who does not have to leave his house to
buy a copy) and for the distributor of the content (who does not have to produce and sell
a physical product (CD, DVD) with the content, and can just send the digital data over
the internet). Ideally, these technologies benefit everyone.

Digital piracy. As digital data is much easier to reproduce and copy than say a car,
the rise of digital content also raises new issues, such as digital piracy. A customer who
has been granted access to watch a movie, e.g. by buying a DVD in the store or obtaining
it through official online vendors, can easily distribute this movie to his family, friends,
and others as well. The simplest way to do this would just be to send a digital copy of
the same content to his friends, so that they can also play the video. With digital rights
management (DRM), distributors of the content can make it harder to either copy the
raw data or play the same data on two different machines, but even the most advanced
technologies cannot prevent that a customer plays the movie on his TV and then records
either directly from the TV, or uses an external device (a camera) to capture the movie in
another medium. After all, the customer has to be able to watch the movie, so it cannot
be prevented that an external source records what the user is seeing. So even with DRM
techniques, it seems hard to prevent all types of piracy.

Watermarking. While preventing the recording and redistribution of digital content
seems hard, if not impossible, not all is lost for the content owner yet. Each legitimate
customer has to be able to watch the same movie, but that does not mean that each user
has to watch the exact same copy of the movie. More precisely, it may be possible to embed
hidden watermarks in the content, which are imperceptible to the eye, but which can be
observed by a detector with knowledge of the locations and shapes of these watermarks.
For instance, by making some pixels in some of the frames slightly darker on one copy
and slightly lighter on another copy, the average user will not be able to tell that he is
watching a watermarked copy, but a detector can sense whether this copy is the dark or

8 CHAPTER 1. COLLUSION-RESISTANT FINGERPRINTING CODES

the light version. By embedding watermarks in the content that are unique to each user,
and recovering a pirate copy of the content which has been distributed online, a tracer
can then detect who is responsible for the piracy, and take action against these users.

Collusion attacks. With these watermarking techniques it may become harder for
pirates to share content online without being caught, but the cat-and-mouse game does
not end here. By obtaining multiple legitimate copies of the same content, or by cooper-
ating with other users, a pirate may compare several differently watermarked copies of
the same content, to find parts of the watermark. It may be hard to tell whether some-
thing has changed to the content if there is nothing to compare a copy to, but if a user
has two different copies, then by simply looking at the raw data he can find parts of the
watermark in the content. Pirates who have compared their copies and detected parts of
the watermark where their copies differ may try to remove this watermark, or simply mix
their copies; if each time the different copies of the content differ, the pirates randomly
choose one of their copies to use for the pirate output, then the watermark in the resulting
pirate copy will not match any of the pirates’ watermarks. Using such collusion attacks,
the pirates may not be caught, and they again win the game.

Collusion-resistant fingerprinting. Again, this is not the end of the story, as the dis-
tributor of the content can defend against collusion attacks. By carefully choosing which
user is assigned which watermarked version of the content in which part of the content,
each user may not only be assigned a unique copy of the content, but the fingerprints
assigned to the users may also be resistant against such collusion attacks. Then, even
a mixed copy of the content formed by a collusion attack may be traced back to one or
more of the responsible users. For this we need collusion-resistant fingerprinting codes,
describing which user receives which watermarked version in each segment, and a trac-
ing algorithm, describing how a mixed fingerprint can be traced back to the guilty users.
With collusion-resistant fingerprinting schemes, users may be deterred from piracy, and
the content distributor may win the cat-and-mouse game after all.

1.2 — The bias-based framework

The above problem of fingerprinting can be modeled by the following two-person
game between a distributor D and an adversary C (the set of colluders). First, there is a
universe U of n users, and the adversary is assigned a random subset of users C ⊆ U of
size |C| = c. This subset C is unknown to the distributor, although we commonly assume
that the distributor does know (an upper bound on) c. The aim of the game for the
distributor D is ultimately to discover C by gathering evidence from the pirate output.
The two-person game consists of three phases: (1) the distributor uses an encoder to
generate a fingerprinting code, used for assigning watermarked versions to users; (2) the
colluders employ a collusion channel to generate the pirate output from their given code
words; and (3) the distributor uses a decoder to map the pirate output to a set C ′ ⊆ U.

1.2.1 – Encoder. First, the distributor generates a fingerprinting code X of n binary1

code words of length `. The parameter ` is referred to as the code length, and the dis-
tributor would like ` to be as small as possible. For the eventual embedded watermark,

1In fingerprinting a common generalization is to assume that the entries of the code words come from an
alphabet of size q > 2, but we will restrict our attention to the binary case q = 2.

1.2. THE BIAS-BASED FRAMEWORK 9

we assume that for each segment of the content there are two different versions, and the
watermark of user j is determined by the ` entries in the jth code word of X.

A common assumption on the encoding process [Tar03] is to assume that X is created
by first generating a bias vector P ∈ (0, 1)` (by choosing each entry Pi, for i = 1, . . . , `,
independently from a certain distribution fP), and then generating code words Xj ∈ X

according to P(Xj,i = 1) = Pi. This guarantees that watermarks of different users j are
independent, and that watermarks in different positions i are independent. Fingerprint-
ing schemes that satisfy this assumption are sometimes called bias-based schemes, and
the encoders considered here are also assumed to belong to this category. We denote the
set of all possible encoders in our model by Pe.

1.2.2 – Collusion channel. After generating X, the code words are used to select and
embed watermarks in the content, and the content is sent out to all users. The collud-
ers then get together, compare their copies, and use a certain collusion channel or pirate
attack Θ to determine the pirate output Y ∈ {0, 1}`. If the pirate attack behaves sym-
metrically both in the colluders and in the positions i, then the collusion channel can be
modeled by a vector θ ∈ [0, 1]c+1, consisting of entries θz = fY|Z(1|z) = P(Yi = 1|z) (for
z = 0, . . . , c) indicating the probability of outputting a 1 when the pirates received z ones
and c−z zeroes [FPFGC09]. The set of possible pirate attacks θ is sometimes denoted by
Pc. A further restriction on θ in fingerprinting is the marking assumption, introduced by
Boneh and Shaw [BS98], which says that θ0 = 0 and θc = 1, i.e., if the pirates receive
only zeros or ones they have to output this symbol. As an example, one might think of
symbols corresponding to different decryption keys, in which case it may indeed be im-
possible to output a symbol (decryption key) which was not among the received symbols
(decryption keys) of the colluders.

For concreteness, throughout the first part we will consider various pirate attacks
which have been considered in the fingerprinting literature before:

• Interleaving attack: The coalition randomly selects one of its members and outputs
his symbol. This corresponds to (θint)z = z/c for all z, so that indeed (θint)0 = 0
and (θint)c = 1. This attack is simple to execute for the pirates and at the same
time known to be one of the hardest attacks to deal with, from the tracing point of
view.

• All-1 attack: The pirates output a 1 whenever they can, i.e., whenever they have
at least one 1. This translates to (θall1)z = 1{z > 0}. As we will see in Chapter 6,
this attack is of particular interest due to its relation with group testing.

• Majority voting: The colluders output the most common symbol among their re-
ceived symbols. This means that (θmaj)z = 1{z > c/2}.

• Minority voting: The traitors output the symbol which they received the least often
(but received at least once). For 1 6 z 6 c−1, this corresponds to (θmin)z = 1{z <
c/2}, while by the marking assumption we have (θmin)0 = 0 and (θmin)c = 1.

• Coin-flip attack: If the pirates receive both symbols, they flip a (fair) coin to decide
which symbol to output. For 1 6 z 6 c− 1, this corresponds to (θcoin)z =

1
2 , while

due to the marking assumption we have (θcoin)0 = 0 and (θcoin)c = 1.
Note that not all pirate attacks can be categorized in this model, as this assumes that
the pirate output only depends on the pirate tallies, rather than the exact assignment of
symbols to colluders. This symmetry among pirates may be a common assumption, but
as noted in e.g. [Sch08] this assumption is not obvious. Among the collusion attacks that

10 CHAPTER 1. COLLUSION-RESISTANT FINGERPRINTING CODES

are not captured in the above model, we highlight one in particular:
• Scapegoat attack: The coalition always selects the same colluder, and outputs his

symbol. Although this makes finding this one colluder easy, it may guarantee that
the other colluders are never in any danger of getting caught.

1.2.3 – Decoder. After the pirate output has been generated and distributed, we as-
sume the distributor intercepts it and applies a decoding algorithm to Y , X and P to
compute a set C ′ ⊆ U of accused users. The distributor wins the game if no innocent
users are caught and colluders are caught, and loses if this is not the case. This definition
is intentionally ambiguous, as it covers two different but closely related definitions of
when the distributor wins the game:

• Catch-all scenario: The distributor D only wins the game if the estimated collusion
C ′ is exactly equal to C [Mou08]. Note that in the standard non-adaptive setting,
this game can never be won if the pirates are allowed to use pirate-asymmetric
attacks like the scapegoat attack.

• Catch-one scenario: The distributor D wins if C ′ contains at least one colluder
and contains no innocent users. This game can be won by the distributor with high
probability in any setting if ` is sufficiently large.

Unless stated otherwise, we will consider the catch-one scenario. Finally, regardless of
the model, it is generally impossible to guarantee that the distributor wins the game with
probability 1, and we therefore define two error probabilities as follows:

• ε0: The false-positive probability of accidentally accusing one or more innocent
users. In other words, this corresponds to the event C ′ 6⊆ C.

• ε1: The false-negative probability of not catching the colluders. In the catch-all
setting this means C 6⊆ C ′ and in the catch-one setting this means C ′ ∩ C = ∅.

In theory, what usually happens is that the parameters c,n, ε0, ε1 are specified, and one
is tasked with designing a scheme that works against c colluders hidden among n total
users with false-positive and false-negative error probabilities bounded from above by
ε0 and ε1 respectively, while at the same time minimizing the code length ` required to
provide these guarantees. Commonly one prefers to set ε0 � ε1, as making sure that
innocent users are not harmed is more important than making sure that (all) guilty users
are caught.

1.2.4 – Adaptivity. Finally, the differences between non-adaptive (static) fingerprint-
ing, adaptive (dynamic) fingerprinting, and sequential fingerprinting can be explained by
showing in which order the encoding, collusion and decoding phases take place. Denot-
ing by enci, colli, deci the encoding, collusion and decoding phases corresponding to the
ith segment of the content, we can order the phases as follows:

• Non-adaptive: enc[1,...,`]; coll[1,...,`]; dec[1,...,`].
• Sequential: enc[1,...,`]; coll1; dec1; coll2; dec2; . . . ; coll`; dec`.
• Adaptive: enc1; coll1; dec1; enc2; coll2; dec2; . . . ; enc`; coll`; dec`.

In other words: in the adaptive setting the code can be adjusted and accusations can be
made after every symbol; in sequential fingerprinting only users can be accused between
rounds, but the code cannot be updated; and in non-adaptive settings the distributor is
only allowed to make a final decision at the end of the game.

1.3. SEARCHING FOR TWO COLLUDERS 11

1.3 — Searching for two colluders

To illustrate the above model, let us consider a very basic example, where we know
that there exists a collusion of size c = 2. By the marking assumption, we know that if
both colluders receive the same symbol they are forced to output this symbol, while if
they receive different symbols they are allowed to choose either of them to output.

Encoder. Perhaps the simplest solution one could think of to design a fingerprinting
code for this setting, namely letting the code matrix X consist of uniformly random bits
(with probability 1

2 of either a 0 or a 1), turns out to work very well in the case of two
colluders. In the bias-based setting this corresponds to fixing p ≡ 1

2 , or equivalently
fP(p) = δ(p−

1
2) where δ is the Dirac delta-function.

Decoder. For the decoding procedure, let us use the following method: we assign
a score Sj to each user j, where Sj = |{i : xj,i = yi}| counts how often this user had a
symbol matching the pirate output. We decide to include user j in the set of accused users
C ′ if and only if his score Sj exceeds a certain accusation threshold η to be specified later.

Performance. For innocent users, note that P(xj,i = yi) = 1
2 , and so an innocent

user’s score Sj will be distributed according to a binomial distribution on ` trials with
probability of success 1

2 , i.e., Sj ∼ Bin(`, 1
2). For guilty users j1 and j2, note that with

probability 1
2 both Sj1 and Sj2 increase by 1 (if they receive the same symbol, they are

forced to output this symbol), and with probability 1
2 only one of Sj1 and Sj2 increases

by 1. Letting SC = Sj1 + Sj2 , we see that SC − ` ∼ Bin(`, 1
2). Then, assuming that the

colluders share the blame equally and randomly select one of their symbols to output,
both 2Sj1 − ` and 2Sj2 − ` follow (dependent!) binomial distributions with parameters `
and 1

2 as well. To summarize:
• For innocent users, we have Sj ∼ Bin(`, 1

2);
• For the colluders j1, j2, we have Sj1,2 ∼

1
2 `+

1
2 Bin(`, 1

2).
In particular, note that innocent users have an average score of 1

2 ` after ` segments (with
a fluctuation in the scores proportional to

√
`), and both colluders have an average score

of 3
4 `, with small standard deviations as well. So intuitively, it should only be a matter

of time before the two colluders will have the highest scores among all users. Taking the
threshold η appropriately between 1

2 ` and 3
4 ` and letting ` be sufficiently large (based

on the exact parameters n, ε0 and ε1), we can guarantee that the colluders and only the
colluders are caught with high probability2.

Hypothesis testing. In the end, what we are actually doing here is trying to dis-
tinguish between samples from two different distributions, with as few samples as pos-
sible. One distribution could be considered the base case (a user is innocent and has
score Sj ∼ Bin(`, 1

2)), and the other is the less likely alternative (this user is guilty and
Sj ∼

1
2 `+

1
2 Bin(`, 1

2)), and so we need to decide whether the base case holds or whether
the assumption that this user is innocent is false, based on the evidence. This is closely
related to hypothesis testing [FPFGC09], distinguishing between a null hypothesis H0

(innocent) and an alternative hypothesis H1 (guilty), and it is not surprising that various
solutions from the literature rely on the theory behind hypothesis testing.

2Note that a folklore result from fingerprinting is that with such a “binary alphabet” (symbols assigned to
users only take two possible values), it is impossible to trace any collusion of size c > 2 deterministically, i.e.,
with error probabilities ε0 = ε1 = 0 [BS98, Theorem IV.2].

12 CHAPTER 1. COLLUSION-RESISTANT FINGERPRINTING CODES

1.4 — Searching for more colluders

In 2003, Tardos [Tar03] proposed a method for collusion-resistant traitor tracing us-
ing the bias-based framework above, improving upon earlier literature of e.g. Boneh
and Shaw [BS98] by improving the required code length to capture c colluders from
` = O(c4 logn) to only ` = O(c2 logn). In the same paper he also showed that this
asymptotic scaling behavior is optimal; any scheme designed against c colluders and n
total users, with fixed error probabilities ε0, ε1, requires the use of a code of length at
least ` = Ω(c2 logn). So not only did he show how to solve the arbitrary-c setting much
more efficiently than with previous solutions, he also showed that this solution is opti-
mal up to the leading constant and lower order terms. In the field of collusion-resistant
fingerprinting, this was a groundbreaking discovery.

Encoder. Tardos’ scheme was also the first scheme for arbitrary collusion sizes which
fits the bias-based framework outlined above. The encoder and decoder are implemented
as follows. For the encoder, up to small additive order terms (which quickly vanish for
large collusion sizes), Tardos proposed to use the following density and distribution func-
tions fP and FP:

fP(p) =
1

π
√
p(1 − p)

, FP(p) =
2
π

arcsin
√
p. (p ∈ [0, 1]) (1.1)

This distribution function is known in the literature as the arcsine distribution, which is not
so surprising given the formula for FP. Informally speaking, this choice for the encoder
turns out to have just the right balance between extreme and non-extreme values of p;
we will often have p ≈ 0, 1 very close to 0 or 1, which means the colluders will often
all have the same symbol, but this distribution also guarantees that with non-negligible
probability we will have p ≈ 1

2 .

Decoder. The decoder of Tardos’ scheme depends on an appropriately chosen score
function g, as well as an accusation threshold η. The accusation procedure, or decoding
method, works as follows:

• For each i, j, compute Sj,i = g(xj,i,yi,pi).
• For each j, accuse user j if

∑`
i=1 Sj,i > η.

Without specifying g and η this description is still very general, and it covers (almost)
all known variants of Tardos’ original scheme. The choice of g, as well as the method
to determine η (and `), are what separates one scheme from another. Originally, Tardos
proposed to use the following asymmetric score function g:

g(xj,i,yi,pi) =

+
√

(1 − pi)/pi, if xj,i = 1,yi = 1,

−
√
pi/(1 − pi), if xj,i = 0,yi = 1,

0, if yi = 0.

(1.2)

Note that the name comes from the asymmetry between positions i with yi = 0 and
yi = 1; all positions with yi = 0 are disregarded for the tracing process. Surprisingly it
took another five years before it was discovered that a symmetrized version of this score
function [ŠKC08]works twice as well in distinguishing between innocent and guilty users,
and may lead to up to four times shorter code lengths due to the quadratic dependence

1.4. SEARCHING FOR MORE COLLUDERS 13

on this distinguishability:

g(xj,i,yi,pi) =

+
√

(1 − pi)/pi, if xj,i = 1,yi = 1,

−
√

(1 − pi)/pi, if xj,i = 1,yi = 0,

−
√
pi/(1 − pi), if xj,i = 0,yi = 1,

+
√
pi/(1 − pi), if xj,i = 0,yi = 0.

(1.3)

We refer to this score function as the symmetric score function, and we refer to the variant
of the Tardos scheme using this score function the symmetric Tardos scheme.

Performance. Originally, Tardos used the asymmetric score function described above,
and a slightly modified cumulative bias distribution function F(δ)P of the following form:

F
(δ)
P (p) =

2 arcsin
√
p− 2 arcsin

√
δ

π− 4 arcsin
√
δ

. (p ∈ [δ, 1 − δ]) (1.4)

The parameter 0 < δ� 1 is often called the cutoff parameter, and Tardos used a param-
eter δ = O(1/c) to make a certain proof strategy work3. He then showed that setting
η = O(c logn) and ` = O(c2 logn) leads to constant overall error probabilities, i.e.,
guaranteeing that no innocent users are accused with high probability, and at least one
guilty user is caught with high probability. As Tardos’ main goal was to show achievability
of a code length ` = O(c2 logn), the parameters were chosen rather arbitrarily (satisfying
given bounds), leading to a provable (asymptotic) code length of ` ∼ 100c2 lnn.

Improvements. As the scaling in c and n was known to be optimal due to Tardos’
matching lower bound on `, later work focused on bringing down the leading constant.
Using the symmetric score function, and choosing the parameters accurately, this even-
tually led to an asymptotic code length of ` ∼ 1

2π
2c2 lnn ≈ 4.93c2 lnn [LdW14], thus

improving upon Tardos’ initial result by more than a factor 20. Still, work on lower bounds
had also progressed since then, and it was shown that a tight lower bound on ` for large
c and n is given by ` > 2c2 lnn. This means that there is still a gap of a factor ≈ 2.5
between the upper and lower bounds, and potentially more can be gained by improving
the analysis or using a different scheme.

Larger alphabets. Many generalizations of the fingerprinting model were considered
in the past, one of which is using q different watermarked versions per content segment
rather than 2 as in e.g. [BŠ11,FT01,HM14,LOD12,Sim14,ŠKSC09,ŠKSC11,ŠO15]. For
q > 2 there are various different models in the literature concerning what the capabilities
of the tracer are, and perhaps closest to the above model is the restricted digit model: given
any number of q-ary symbols, the colluders are forced to output one of them. Under this
assumption, codes were initially found which were roughly a factor logq shorter than
binary codes [ŠKC08], while [BŠ11, HM14] showed that the optimal lower bound on `
becomes ` > (2c2 lnq)/(q− 1), i.e., decreases by a factor O(q/ logq) as q increases. In
this work we will focus on the case of q = 2, although most of the results in the following
chapters can be generalized to higher alphabets as well.

3There are reasons to believe [Ško14] that without such a cutoff the error probability ε0 of this scheme will
be too large, and that this is therefore not just an artifact of the proof strategy, although a proof of this claim
was never formally published.

14 CHAPTER 1. COLLUSION-RESISTANT FINGERPRINTING CODES

1.5 — Research questions and outline

With the above previous work in mind, we can formulate various research questions
which are ultimately aimed at closing the gap between the best known upper and lower
bounds. Below we present the relevant research questions, and how they will be answered
in each chapter.

Q1. Can the symmetric Tardos scheme be further improved?

The results of [LdW14] showed that given that the bias distribution function is chosen as
the arcsine distribution, the best asymptotic code length that can be achieved with the
symmetric score function is ` ∼ 1

2π
2c2 lnn. As this is potentially suboptimal, the question

remains: can different choices of the distribution function lead to better results? This
question is addressed in Chapter 2.

Q2. How difficult is fingerprinting for fixed pirate strategies?

While the main fingerprinting game of course considers the scenario where the pirate
strategy is unknown, sometimes making a simplifying assumption in the model can help
to understand the problem better, and to gain more insight into the harder, more general
problem. So if defending against arbitrary pirate attacks is (too) hard to solve directly,
can we perhaps analyze how hard it is to defend against specific, known pirate strategies?
This question is addressed in Chapters 3 and 4.

Q3. Can the insight for fixed pirate strategies be used for arbitrary attacks?

Then, following up on the previous question, we may ask: did we learn anything from
defending against specific attacks? Can these insights help us choose a better decoder for
the general fingerprinting game? This question is mostly addressed in Chapter 4, where
we indeed present an improved decoder for the general fingerprinting game, inspired by
the results from Chapters 3 and 4.

Q4. How much does adaptivity help in tracing collusions?

As described at the end of the bias-based framework, besides the commonly considered
non-adaptive setting there are some cases where the distributor is more powerful, and
may be able to trace colluders faster with an adaptive solution. Some previous works
(e.g. [FT01, LDR+13]) have shown how to do better in these settings, but the question
remains if these solutions are optimal, and how much exactly can be gained from adapting
the code or the decoder to pirate feedback. We address this question in Chapter 5.

Q5. Do results in fingerprinting have applications in different fields?

Finally, we broaden our perspective and consider whether the insights or techniques in
fingerprinting can be used in different fields of research as well. While very recently, ap-
plications of fingerprinting have also been found in differential privacy [BUV14,DTTZ14,
SU15, Ull13], we will focus on a scenario closer to fingerprinting, namely group test-
ing. We will address this question in Chapter 6, where results regarding specific pirate
strategies will turn out to be particularly useful for this area.

CHAPTER 2

Limitations of symmetric decoding

2.1 — Overview

Context. After the invention of the Tardos scheme [Tar03], which was shown to have
an order-optimal code length of ` = Θ(c2 logn) for large c, various follow-up works
focused on e.g. (i) finding improvements to Tardos’ original scheme, to reduce the lead-
ing constant for large c [BT08, IŠO14, LdW14, OŠD15, OŠD13, ŠKC08, ŠVCT08, Ško15];
(ii) finding improvements that reduce the required code length for small c [CNFS05,
NHWI07, NFH+09, Nui09, Nui10, Nui12, Sch03, Sch04]; (iii) finding tight lower bounds
on the code length required by any fingerprinting scheme [AT09, Ami10, AB06, ABD08,
BK04,BŠ11,BŠ12,HM09a,HM09b,HM10,HM12a,HM12b,HM14,Mou08,SBM05,Tar10];
and (iv) finding further improvements to Tardos’ scheme that reduce the costs of trac-
ing the traitors in practice [BS12, CXFF09, DHPG13, FGC08, FPFGC09, FPF09a, FPF09b,
FGC12,FD14,Kur13,MF11b,MF12,ODL14,PFF09,SŠ11,SŠ12,SŠ14,Sim14].

Although in many cases these approaches complemented each other, on some oc-
casions it seemed a piece of the puzzle was still missing to tie the results together. For
instance, Nuida–Hagiwara–Watanabe–Imai [NHWI07] focused on the case of small c and
showed how the distribution function (encoder) can be optimized for the original Tardos
scheme to obtain the best performance, while Škorić–Katzenbeisser–Celik [ŠKC08] fo-
cused mostly on large-c asymptotics and showed how the score function (decoder) of Tar-
dos’ original scheme can be symmetrized to obtain better asymptotic code lengths. Later
Nuida–Fujitsu–Hagiwara–Kitagawa–Watanabe–Ogawa–Imai [NFH+09] updated their re-
sult to incorporate the symmetrized score function of Škorić–Katzenbeisser–Celik, but
there still seemed to be a gap between the two results: with optimized encoders, it was
shown that an asymptotic code length of ` ≈ 5.35c2 lnn was achievable [NFH+09, The-
orem 2]; while with a possibly suboptimal truncated arcsine encoder, an asymptotic
code length of ` ≈ 4.93c2 lnn seemed optimal [HM09a, HM09b, ŠKC08], which was
later proven rigorously by Laarhoven and De Weger [LdW14]. If the encoders proposed
by [NFH+09] were indeed optimal for arbitrary c, would they not also be optimal for
large c? As the authors of [NFH+09] only stated that their asymptotic code length of
` ≈ 5.35c2 lnn was sufficient, rather than necessary, the most probable explanation
was that their analysis for large c was simply not tight. Using the optimized encoders
of [NFH+09], the asymptotic code length should be at least as good as when using trun-
cated arcsine distributions (` ≈ 4.93c2 lnn), and possibly even better. In early 2013, it

?This chapter is based on results from [LdW13].

16 CHAPTER 2. LIMITATIONS OF SYMMETRIC DECODING

was still an open problem what the actual asymptotic code length would be when using
the optimal encoding scheme from [NFH+09].

Results. In this chapter we revisit the work of Nuida–Fujitsu–Hagiwara–Kitagawa–
Watanabe–Ogawa–Imai on optimal distribution functions (encoders) for the symmetric
Tardos scheme [NFH+09], and we take another look at the large-c asymptotics of these
distributions. The main result of this chapter is the following, which basically ties up a
loose end regarding the symmetric Tardos scheme.

Theorem 2.1. For c → ∞, the optimal distribution functions for the symmetric Tardos
scheme of [NFH+09] converge to the arcsine distribution.

Due to previous work on the symmetric Tardos scheme with the (truncated) arcsine
distribution [LdW14,ŠKC08], the next corollary follows immediately from Theorem 2.1.

Corollary 2.2. In the symmetric Tardos scheme, the arcsine distribution encoder is asymp-
totically optimal, and the optimal code length for large c and n is ` =

(
1
2π

2 + o(1)
)
c2 lnn.

Since by 2013, Huang and Moulin [HM09a,HM09b,HM10,HM12a,HM12b] and Amiri
and Tardos [AT09, Ami10] had already proved that the optimal asymptotic code length
for the general fingerprinting game is ` ∼ 2c2 lnn, this immediately establishes that the
symmetric Tardos scheme is sub-optimal for large c. In other words, in the bias-based
fingerprinting framework, assigning scores to users based on the symmetric score func-
tion of Škorić–Katzenbeisser–Celik inevitably leads to code lengths which are larger than
theoretically necessary. This motivates why the following chapters will focus on using
different score functions in the bias-based fingerprinting framework, as these may not be
limited by the asymptotic lower bound of ` ¦ 1

2π
2c2 lnn.

Besides the theoretical results described above, focused on large-c asymptotics, we
also describe a new class of encoders for the symmetric Tardos scheme, which aim to cap-
ture the best properties of the optimal distribution functions of Nuida–Fujitsu–Hagiwara–
Kitagawa–Watanabe–Ogawa–Imai using a much simpler description. These distributions
may be described as discrete arcsine distributions, as they essentially correspond to the
arcsine distribution limited to a finite, well-chosen support. Samples from these distri-
butions are easier to generate (e.g. on resource-constrained devices) than samples from
the optimal distributions, while the loss in performance compared to using the optimal
encoders is small.

Outline. The remainder of this chapter is organized as follows. First, in Section 2.2
we recall the results of [NFH+09] regarding optimal bias distributions for the symmetric
Tardos scheme. In Section 2.3 we state and prove the main technical contributions. In
Section 2.4 we consider a new class of bias distributions for the symmetric Tardos scheme,
based on the results from Section 2.3. Finally, in Section 2.5 we heuristically compare the
code lengths in the symmetric Tardos scheme for various different distribution functions,
such as those proposed in Section 2.4.

2.2 — Bias distributions in the symmetric Tardos scheme

Recall that in bias-based traitor tracing schemes, the fingerprinting code X ⊂ {0, 1}`

is generated by first generating a bias vector p ∈ [0, 1]`, and then generating entries

2.2. BIAS DISTRIBUTIONS IN THE SYMMETRIC TARDOS SCHEME 17

of each fingerprint according to Xj,i ∼ Bernoulli(pi). The bias vector p is generated by
drawing each entry pi from some distribution FP, and by the symmetric Tardos scheme we
mean a bias-based scheme using the score function introduced by Škorić–Katzenbeisser–
Celik [ŠKC08].

2.2.1 – Continuous (truncated) arcsine distributions. A common choice for FP in
the symmetric Tardos scheme is the arcsine distribution with appropriate cutoffs. More
precisely, one first computes a cutoff parameter δc > 0, and then generates biases from
the following cumulative distribution function F(c)P :

F
(c)
P (p) =

2 arcsin
√
p− 2 arcsin

√
δc

π− 4 arcsin
√
δc

. (δc 6 p 6 1 − δc) (2.1)

For c = 10, the function F(10)
P is shown in Figure 2.1, where δ10 ≈ 0.003 is chosen

according to [LdW14, Theorem 7]. Note that for small values of c, the parameter δc has
to be sufficiently large to prove that innocent users are not accidentally accused, while
for large c the cutoff δc needs to tend to 0 to guarantee that colluders are caught even if
c is large. As δc tends to 0 as a function of c, it is clear that for large c, the distribution
functions F(c)P converge to the well-known arcsine distribution F∗P, defined on [0, 1] as:

F∗P(p) =
2
π

arcsin
√
p. (0 6 p 6 1) (2.2)

With these continuous arcsine distribution functions (with cutoffs), it was previously
shown that an asymptotic code length of ` ∼ 1

2π
2c2 lnn is optimal [LdW14].

2.2.2 – Discrete Gauss–Legendre distributions. If the colluders aim to minimize the
expected total collusion score (which is the main parameter of interest in the security
proofs of e.g. [BT08, LdW14, ŠKC08, ŠVCT08, Tar03]), the optimal distributions to be
used by the tracer are in fact discrete distributions with a finite support, and are related
to Gauss–Legendre quadratures in numerical analysis [NHWI07, NFH+09]. To define
these distributions, we first introduce Legendre polynomials. For integer m > 1, the m’th
Legendre polynomial is given by

Pm(x) =
1

2mm!

(
d

dx

)m
(x2 − 1)m. (2.3)

This polynomial has m simple roots on (−1, 1), which we will denote by −1 < x1,m <
x2,m < . . . < xm,m < 1. Now, the optimal distribution functions, for arbitrary c, can
be expressed in terms of these roots xk,m as follows. Here, ‘optimal’ means that these
distribution functions maximize the expected coalition score per segment, which for large
c and n is indeed the main goal of the tracer in the symmetric Tardos scheme [ŠKC08].

Lemma 2.3. [NHWI07, Theorem 3] Let ĉ = dc/2e. Then the optimal distribution function
to fight against c colluders, maximizing the expected collusion score, is

F
(c)
P (p) =

1
Nĉ

ĉ∑
k=1

wk,ĉ1{p > pk,ĉ}. (2.4)

18 CHAPTER 2. LIMITATIONS OF SYMMETRIC DECODING

Here Nĉ is a normalizing constant, 1 is the indicator function, and the points pk,ĉ and
weights wk,ĉ are defined as

pk,ĉ =
xk,ĉ + 1

2
, wk,ĉ =

2

(1 − x2
k,ĉ)

3/2 · P ′ĉ (xk,ĉ)
2 . (2.5)

The Gauss–Legendre distribution F(10)
P of Lemma 2.3, designed to resist c = 10 col-

luders and with a finite support of size ĉ = 5, is shown in Figure 2.1. For small collusion
sizes, this distribution function leads to much shorter codes than those obtained using
the arcsine distributions with cutoffs. For large c, the code length parameter increases,
and [NFH+09] showed that an asymptotic code length of ` ≈ 5.35c2 lnn is sufficient for
large c when using these distribution functions F(c)P . For details on this asymptotic result
and on how Lemma 2.3 was derived, the reader is referred to [NHWI07,NFH+09].

2.3 — Discrete Gauss–Legendre distributions

Focusing on Nuida–Fujitsu–Hagiwara–Kitagawa–Watanabe–Ogawa–Imai’s optimized
discrete Gauss–Legendre distributions, we will prove that letting c tend to infinity in the
family of discrete Gauss–Legendre distributions leads exactly to the arcsine distribution
(cf. Theorem 2.1). This will be done by proving the following main result.

Theorem 2.4. Let the parameters pk,ĉ, wk,ĉ, and Nĉ be as defined as in Lemma 2.3. Let
α > 0, and let k satisfy αc < k < (1 − α)c as c→∞. Then, for large c we have

pk,ĉ = sin2
(
πk

2ĉ

)
+ o(1), wk,ĉ =

π

ĉ
+ o

(
1
c

)
, Nĉ = π− o(1). (2.6)

Proof. The proof consists of three parts, corresponding to the three expressions in (2.6).
pk,ĉ: Let θk,ĉ = arccos(xk,ĉ). From [AS72, Eq. (22.16.6)] we have

θk,ĉ =

(
4(ĉ− k) + 3

4ĉ+ 2

)
π+ o(1) = π−

πk

ĉ
+ o(1). (2.7)

Note that to apply [AS72, Eq. (22.16.6)] we used the fact that αc < k < (1−α)c, as for
other values of k this result may not hold.1 Now, since cos(π−φ) = 2 sin2(φ2)−1 for all
φ ∈ R, we obtain

xk,ĉ = cos
(
π−

πk

ĉ
+ o(1)

)
= 2 sin2

(
πk

2ĉ

)
− 1 + o(1). (2.8)

By definition of pk,ĉ =
1
2 (xk,ĉ + 1), the given expression for pk,ĉ follows.

wk,ĉ: Combining [Sze75, Equations (15.3.1) and (15.3.10)] for α = β = 0, and
using the fact that 2 sin(φ2) cos(φ2) = sinφ for arbitrary φ ∈ R, we get

2
(1 − x2

k,ĉ)P
′
ĉ(xk,ĉ)2 =

π

ĉ
sin(θk,ĉ) + o

(
1
c

)
. (2.9)

1This subtle condition on k, which is not stated in [AS72] but does appear in the references of [AS72],
was previously overlooked by Marshak [Mar90], leading to an incorrect comparable result on the asymptotics
of Gauss–Legendre quadratures.

2.3. DISCRETE GAUSS–LEGENDRE DISTRIBUTIONS 19

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1: The continuous arcsine distribution function F(10)
P with cutoff δ10 ≈ 0.003 (red) and the discrete

Gauss–Legendre distribution function F(10)
P (green), both corresponding to the case c = 10. The dashed curve

shows the arcsine distribution function. The discrete arcsine distribution (blue) is described in Section 2.4.

5 10 50 100 500 1000
0

2

4

6

8

10

Figure 2.2: Estimates of the code length parameter d` for several distribution functions F. The dashed line
shows the asymptotic optimal valued` = 1

2π
2 corresponding to the arcsine distribution. Note that the discrete

distributions are the same for 2c and 2c− 1 colluders, which explains the stepwise behavior of these curves.

20 CHAPTER 2. LIMITATIONS OF SYMMETRIC DECODING

Dividing both sides by
√

1 − x2
k,ĉ = sin θk,ĉ, we obtain the expression for wk,ĉ of (2.6).

Nĉ: First, note that the exact expression for the normalizing constant is

Nĉ =

ĉ∑
k=1

wk,ĉ. (2.10)

Now, the Gauss–Legendre quadrature rule [AS72, Eq. (25.4.29)] states that for any ana-
lytic function f, there exist constants Aĉ > 0 and ξ ∈ (−1, 1) such that

∫1

−1
f(x)dx =

ĉ∑
k=1

2f(xk,ĉ)

(1 − x2
k,ĉ)P

′
ĉ(xk,ĉ)2 +Aĉf

(2ĉ)(ξ). (2.11)

For polynomials of degree at most 2ĉ, the remainder term vanishes, and the sum of
weighted function values is equal to the integral on the left hand side. This explains why
Gauss–Legendre quadratures are used in numerical analysis, as complicated integrals can
then be approximated by evaluating the function at a small number of points, and taking a
weighted linear combination of these function values. Note that the term inside the sum-
mation looks very similar to the definition ofwk,ĉ of (2.5). Now, let f(x) = (1− x2)−1/2,
which is analytic on (−1, 1). Then we have f(2ĉ)(x) > 0 for all x ∈ (−1, 1), so in partic-
ular f(2ĉ)(ξ) > 0. It follows that

π =

∫1

−1

dx√
1 − x2

=

ĉ∑
k=1

wk,ĉ +Aĉf
(2ĉ)(x) >

ĉ∑
k=1

wk,ĉ = Nĉ. (2.12)

On the other hand, from the given expressions forwk,ĉ and pk,ĉ, and the fact thatwk,ĉ >
0 for all k, it follows that

Nĉ >

ĉ−o(ĉ)∑
k=o(ĉ)

wk,ĉ = (ĉ− o(ĉ))

(
π

ĉ
+ o

(
1
ĉ

))
= π− o(1). (2.13)

So π− o(1) < Nĉ < π, which implies the result in (2.6).

Note that except for the points pk,ĉ near 0 and 1, corresponding to k = o(ĉ) or
k = ĉ − o(ĉ), the leading terms of the weights of these points are all equal. Since
these points in the ‘middle’ carry 1 − o(1) of the weight of the distribution, the points
near 0 and 1 have a negligible total weight, and do not significantly alter the shape of
the limiting distribution. For the points in the middle, note that pk,ĉ converges to the
expected value of the corresponding order statistic of the arcsine distribution, i.e., the
value y corresponding to F∗P(y) =

k
ĉ

is exactly y = (F∗P)
−1(k

ĉ
) = sin2(πk2ĉ) = pk,ĉ+o(1).

Since asymptotically all these points have the same weight, and the set of points {pk,ĉ}
ĉ
k=1

is dense in (0, 1) when c tends to infinity, these results imply that F(c)P (p) → F∗P(p) for
each p ∈ (0, 1).

Theorem 2.5. In the symmetric Tardos scheme, the arcsine distribution is asymptotically
optimal.

2.4. DISCRETE ARCSINE DISTRIBUTIONS 21

Škorić–Katzenbeisser–Celik [ŠKC08, Section 6] previously showed that when using
the arcsine distribution in the symmetric Tardos scheme, due to the Central Limit Theorem
the optimal code length inevitably converges to `→ 1

2π
2c2 lnn. Therefore the following

corollary is immediate.

Corollary 2.6. In the symmetric Tardos scheme, the arcsine distribution encoder and a code
length of ` =

(
1
2π

2 + o(1)
)
c2 lnn are asymptotically optimal.

2.4 — Discrete arcsine distributions

In addition to the previous theoretical results, we present a new, simple class of distri-
bution functions, which are obtained by discarding appropriate order terms in the proof
of Theorem 2.4. Compared to the Gauss–Legendre distributions of Lemma 2.3, these
distributions are much simpler to state and implement, but still seem to achieve a per-
formance comparable to the optimal distributions. This suggests that these distributions
may form a good alternative for the optimal distributions in e.g. resource-constrained
environments like smart cards.

As in the proof of Theorem 2.4, according to [AS72, Eq. (22.16.6)] the parameters of
the optimal distribution function F(c)P satisfy

pk,ĉ ≈ sin2
(

4k− 1
8ĉ+ 4

π

)
, wk,ĉ ≈

π

ĉ
, Nĉ ≈ π. (2.14)

To get the exact values of these parameters for large c requires quite some effort, involv-
ing e.g. the computation of roots of Legendre polynomials, which are ĉ’th derivatives of
degree-2ĉ polynomials. A practical solution may be to store all values pk,ĉ,wk,ĉ,Nĉ in
memory, but (i) the range of possible values of c can be large, (ii) in certain applications
the amount of memory may be limited, and (iii) one inevitably has to store approxima-
tions of these values in memory, introducing slight deviations from the optimal distri-
bution functions F(c)P . If we cannot avoid approximating F(c)P anyway, and memory is

limited, we may just as well use a much simpler2 approximation to F(c)P , by taking:

p ′k,ĉ = sin2
(

4k− 1
8ĉ+ 4

π

)
, w ′k,ĉ =

π

ĉ
, N ′ĉ = π. (2.15)

This translates to the following class of discrete distribution functions F̃P, where as before
ĉ = dc/2e is the size of the support of F̃(c)P :

F̃
(c)
P (p) =

1
ĉ

ĉ∑
k=1

1

{
p > sin2

(
4k− 1
8c+ 4

π

)}
. (2.16)

Generating a bias p from this distribution is equivalent to drawing r uniformly at ran-
dom from { 3π

8ĉ+4 , 7π
8ĉ+4 , . . . , π2 − 3π

8ĉ+4 }, and setting p = sin2(r). Note that if we were to
draw r uniformly at random from the complete interval [0, π2], this would correspond to

2Although the given expressions are trivial approximations of (2.14), it is important to note that one should
not use the expressions from Theorem 2.4 without the order terms: for small c, the resulting distribution would
be much further off from the optimal distribution F(c)P than with the expressions given in the text.

22 CHAPTER 2. LIMITATIONS OF SYMMETRIC DECODING

the arcsine distribution, while drawing r uniformly at random from [arcsin(
√
δc), π2 −

arcsin(
√
δc)] corresponds to the arcsine distribution with cutoff δc. These distributions

may therefore appropriately be called discrete arcsine distributions, and of course for
large c these distributions also converge to the arcsine distribution F∗P.

Remark 2.1. Interestingly, the parameters

p ′′k,ĉ = sin2
(

4k− 2
8ĉ

π

)
, w ′′k,ĉ =

π

ĉ
, N ′′ĉ = π, (2.17)

correspond to the parameters of the so-called Chebyshev–Gauss quadratures [AS72, Eq.
(25.4.38)] as opposed to Gauss–Legendre quadratures, considered previously. These
quadratures are commonly used to approximate integrals of the form∫1

−1

g(x)√
1 − x2

dx ≈
c∑
k=1

w ′′k,cg(x
′′
k,c), (2.18)

where x ′′k,c = 2p ′′k,c − 1 and g is a sufficiently smooth function. Note the resemblance
between (2.18) and (2.12), in case g(x) ≡ 1 is the constant function with value 1. The
distribution functions generated by these weights and points are very similar to the dis-
crete arcsine distributions described above, with the main difference being the “cutoff”,
which is about a third smaller (i.e., 2π

8c compared to 3π
8c+4).

2.5 — Estimating code lengths

Let us finally try to give a qualitative comparison of the classes of discrete and contin-
uous distribution functions considered in this chapter, in terms of code lengths. Since the
(tails of) distributions of user scores are hard to estimate, and known proof methods are
not tight, we will only give a heuristic comparison of the code lengths. We will assume
that the scores of users are exactly Gaussian, so that we can get a reasonable estimate
for the optimal code length constant as d` = `/(c2 lnn) ≈ 2c2/µ2

1, where µ1 = µ̃/c is
the expected average colluder score per position [ŠKC08, Corollary 2]. In the case of the
discrete distributions of [NFH+09], µ1 does not depend on the pirate strategy, and we
can compute its value exactly. For the arcsine distribution with cutoffs and the discrete
arcsine distribution, µ1 does depend on the pirate strategy, but by considering the attack
that minimizes µ1 we can obtain reasonable estimates for d`.

Figure 2.2 shows the resulting estimates of d`, as well as the provably sufficient values
for d` of [LdW14]. Note that the heuristic estimates for the continuous distributions are
based on using the arcsine distributions with cutoffs optimized for the proof technique
of [LdW14], and so these results may not be tight. As illustrated in Figures 2.1 and 2.2,
the discrete arcsine distributions approximate the optimal Gauss–Legendre distributions
very well, and seem to achieve a comparable performance for most values of c.

CHAPTER 3

Non-adaptive fingerprinting capacities

3.1 — Overview

Context. As described in Chapter 2, the binary symmetric Tardos scheme [ŠVCT08]
is bound by an asymptotic code length of at least ` ≈ 4.93c2 lnn, while previous work
showed that constructions must exist which attain an asymptotic code length of ` ∼

2c2 lnn. As a result, for large collusion sizes using the symmetric score function is sub-
optimal, and to achieve a better performance in this regime one inevitably has to use
different score functions or alternative decoding schemes.

Since by 2013, more than a decade had passed since the invention of the Tardos
scheme, and still no simple “capacity-achieving” decoder had been invented1, it made
sense to consider a slightly simplified problem, and see if answers to these easier ques-
tions would lead to further insights or solutions for the harder, more general problem.
In particular, if finding solutions for the model of unknown pirate attacks is hard, why
not start with the easier problem of defending against known pirate strategies, and see
what this teaches us about the general fingerprinting game between the colluders and the
tracer? Can we find optimal solutions in case the tracer knows exactly how the pirates
will mix their copies? And what do ‘optimal solutions’ actually correspond to for the case
of known attacks?

Known attacks. In this chapter we will attempt to answer the latter question: What
exactly does it mean for a strategy-dependent tracing scheme to be optimal? More specif-
ically, what is the optimal asymptotic code length that such a scheme should achieve,
to claim optimality? The other questions are postponed to the following chapters. For
concreteness, we will consider explicit pirate strategies θ previously considered in e.g.
[BS12, CXFF09, FPF09a, FD14, HM12b, Laa13a, MF11a, MF12, OŠD15, OŠD13] (and de-
scribed in the preliminaries in Chapter 1), and derive explicit asymptotics of the required
code lengths to defend against these attacks. The results in this chapter build upon previ-
ous work of Huang and Moulin [HM12b], and similar to previous work on fingerprinting
capacities, we will distinguish between simple and joint decoders, where the distinction
roughly corresponds to the computational complexity of the decoder. An overview of
the results of this chapter can be found in Table 3.1, which contains the asymptotics of

?This chapter is based on results from [Laa14,Laa15a].
1Some papers had previously investigated decoders which may be capacity-achieving for large c (e.g.

[AT09, MF12, Mou08]), but unlike e.g. the symmetric score function, these did not admit simple, explicit ex-
pressions for the score S(x,y,p) given the user’s symbol x, pirate symbol y, and bias p, and did not come
with provable bounds on the error probabilities for given code lengths.

24 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

the capacities for several pirate strategies. Note that capacities C translate to asymptotic
code lengths ` according to ` ∼ C−1 log2 n, e.g., we show that any simple decoder for the
coin-flip attack needs a code of length at least ` ∼ 4c lnn

(ln 2)2 .
Considering the results in Table 3.1, it is worth noting that for most pirate strategies θ

there is an asymptotic gap between the simple and joint capacities. In other words, a joint
decoder can theoretically perform significantly better for most pirate strategies. In many
cases the optimal code length further scales only linearly (rather than quadratically) in
c, and from the attacks listed in Table 3.1 clearly the interleaving attack is the hardest
considered attack to deal with from the point of view of the tracer; dealing with this pirate
strategy is (almost) as hard as dealing with unknown attacks.

Arbitrary attacks. Surprisingly, one of the results of this chapter is that the maximum
achievable code rate for the joint fingerprinting game when the colluders use the inter-
leaving attack is of the order β/c2 ≈ 0.84/c2 which is strictly higher than the joint capac-
ity of 1

2c2 ln 2 ≈ 0.72/c2 for the general, uninformed fingerprinting game. This result con-
tradicts earlier statements of Huang and Moulin [HM12b, Corollaries 6, 7], who claimed
that the interleaving attack and the arcsine distribution form an asymptotic saddle-point
solution in the joint fingerprinting game, in the sense that neither the distributor nor
the colluders have anything to gain by unilaterally departing from this point. Instead,
we show that the distributor can deviate from this saddle point and achieve higher code
rates when the colluders fix their attack to be the interleaving attack, regardless of c and
regardless of the tracing strategy. A consequence of this result is the following:

Theorem 3.1. The interleaving attack is a suboptimal attack for large c and cannot be part
of a saddle-point solution of the joint fingerprinting game.

The flaw in Huang and Moulin’s results is exactly in the assumption they made to
perform their analysis [HM12b, Condition 3]: whereas they claim that their conditions
for the asymptotic regime (including this particular assumption) are only “mild regularity
assumptions” which do not affect the overall outcome, we show that this condition is too
restrictive on the capabilities of the tracer: there exist classes of encoders which do not
satisfy [HM12b, Condition 3] but which are of significant importance to the fingerprinting
game and therefore cannot be ignored.

A further consequence of the above result is that the joint fingerprinting capacity
result of Huang and Moulin is incorrect or at least incomplete, and so deriving the joint
fingerprinting capacity is again an open problem. By achievability results of e.g. Amiri
and Tardos [AT09] and the above result on the joint capacity for the interleaving attack,
currently the best provable bounds on the joint fingerprinting capacity under the marking
assumption are2

0.72
c2 ≈ 1

2c2 ln 2
6 Cj(Pmark) 6

β

c2 ≈
0.84
c2 . (3.1)

Note that while Huang and Moulin’s proof of the joint fingerprinting capacity may be
considered incomplete (i.e. the joint capacity may be equal to the given value, but the
proof contains a gap), the result that fixing the attack as the interleaving attack (without
restrictions on the tracing strategy) and then taking the limit of large c leads to a joint
capacity of 1/(2c2 ln 2) is provably incorrect.

2Formal definitions of Cj(Pmark) and β can be found in Section 3.3.

3.2. SIMPLE CAPACITIES 25

Pirate strategy Simple capacity Joint capacity

θint: interleaving attack
(1

2 ln 2

)
/c2 ≈ 0.72/c2 [HM12b] β/c2 ≈ 0.84/c2

θall1: all-1 attack (ln 2)/c ≈ 0.69/c 1/c ≈ 1.00/c [Mal78]
θmaj: majority voting

(1
π ln 2

)
/c ≈ 0.46/c 1/c ≈ 1.00/c

θmin: minority voting (ln 2)/c ≈ 0.69/c 1/c ≈ 1.00/c
θcoin: coin-flip attack

(1
4 ln 2

)
/c ≈ 0.17/c

(
log2

5
4

)
/c ≈ 0.32/c

Table 3.1: An overview of the capacity results derived in this chapter, for simple and joint decoders.

Outline. The remainder of this chapter is devoted to proving the results in Table 3.1,
and studying the implications for the general fingerprinting game with unknown attacks.
In Section 3.2 we derive the exact asymptotics of the simple capacities for various pirate
strategies. In Section 3.3 we do the same for joint capacities, leading to the results in the
right-most column of Table 3.1. Section 3.4 finally discusses the implications of the new
result on the joint interleaving capacity on the uninformed fingerprinting game.

3.2 — Simple capacities

In a simple-decoding traitor tracing scheme, the decoder bases the decision whether or
not to accuse user j only on the j’th code word of X, and not on code words corresponding
to other users. This means that the decoding step of deciding whether or not to accuse
user j will generally be fast, but less accurate than when all information available to the
decoder (the entire code X) is taken into account.

Huang and Moulin [HM09a, HM09b, HM10, HM12b] previously studied simple ca-
pacities in the context of fingerprinting, and showed that given a set of allowed collusion
channels (pirate strategies) Pc and a set of allowed encoders (bias distribution functions)
Pe, a fingerprinting rate3 Rs is achievable4 by a simple decoder if and only if

Rs 6 Cs(Pe,Pc) = max
FP∈Pe

min
θ∈Pc
EPIs(p,θ), (3.2)

where Ep is the expectation over values of p sampled from FP, and Is(p,θ) = I(X1; Y|P =
p) is the mutual information between a colluder symbol Xj,i and the pirate output Yi
(given the bias p) in one segment i. In this chapter we let Pe be the set of all distribution
functions on (0, 1), denoted by (Pe)∗, and we will commonly omit the argument Pe

and write Cs(Pc) = Cs((Pe)∗,Pc). For fixed collusion channels Pc = {θ}, choosing
FP(p) = 1{p > p0} is optimal [HM12b, Section IV.B], where p0 ∈ (0, 1) is the value of p
maximizing the mutual information. In that case the expression from (3.2) reduces to

Cs({θ}) = max
FP∈Pe

EPIs(p,θ) = max
p∈(0,1)

I(X1; Y|P = p). (3.3)

3Formally, a fingerprinting rate Rc is defined to be achievable if there exists a sequence of traitor tracing
schemes such that, for a fixed number of colluders c and a total number of users n = 2`Rc , both the false-
positive and false-negative error probabilities tend to 0 as `→∞. The fingerprinting capacityR∗c is then defined
as the supremum over all achievable fingerprinting rates, and large-c asymptotics of the fingerprinting capacity
correspond to taking the limit of R∗c for large c. Informally, the rate of a code corresponds to R ∼ log2(n)/`,
and the fingerprinting capacity R defines the minimum value of ` ∼ log2(n)/R that may be achieved.

4Certain conditions on Pc and Pe must be satisfied for this to hold, which can be found in [HM12b].

26 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

In case the set of allowed pirate attacks consists of just one attack Pc = {θ}, with slight
abuse of notation we will abbreviate the left hand side as Cs(θ) = Cs({θ}).

To study the mutual information payoff function Is(p,θ) we will use the following
identity [HM12b, Equation (61)]:

Is(p,θ) = pd(a1‖a) + (1 − p)d(a0‖a), (3.4)

where d(·‖·) denotes the relative entropy or Kullback–Leibler divergence, defined by
d(α‖β) = α log2(

α
β
) + (1 − α) log2(

1−α
1−β), and a,a0,a1 are defined as

a =

c∑
z=0

(
c

z

)
pz(1 − p)c−zθz, (3.5)

a0 =

c−1∑
z=0

(
c− 1
z

)
pz(1 − p)c−z−1θz, (3.6)

a1 =

c∑
z=1

(
c− 1
z− 1

)
pz−1(1 − p)c−zθz. (3.7)

Given p and θ, the above formulas allow us to compute the mutual information Is(p,θ)
explicitly, and we can perform the optimization described in (3.3).

For obtaining asymptotic expressions for the simple capacities for various models,
we will extensively work with the Kullback–Leibler divergence. Some of the involved
derivations can be simplified using the following Taylor expansion of d(α‖β) around
α = β:

d(α‖β) = (α− β)2

2β(1 − β) ln 2

(
1 +O

(
|α− β|

β(1 − β)

))
. (3.8)

Intuitively, this says that the divergence is bigger if α and β are further apart, but for α
and β both close to 0 or 1 note that the divergence may be large as well due to the β
and 1−β in the denominator. In that case one has to be careful and see whether |α−β|
approaches 0 faster than β or 1 − β. A special case of (3.8) for α ≈ 1

2 and β = 1
2 is

d

(
1
2
± γ

∥∥∥1
2

)
=

2γ2

ln 2
+O(γ4). (3.9)

Finally, if α = 1
2 and β ≈ 1

2 , we can approximate d(α‖β) as

d

(
1
2

∥∥∥1
2
(1± γ)

)
=

1
2
d
(
1‖1 − γ2

)
, (3.10)

and regardless of α and β, one always has d(α‖β) = d(1 − α‖1 − β).
Next, we will study the asymptotics of the simple capacities for five commonly con-

sidered fingerprinting attacks.

3.2.1 – Interleaving attack. The interleaving attack in fingerprinting (considered in
e.g. [BS12, CXFF09, FPF09a, HM12b, Laa13a, OŠD15]) is characterized by the coalition
choosing one of its members at random, and outputting his symbol. Given z members

3.2. SIMPLE CAPACITIES 27

with a 1 and c− z members with a 0, the probability of outputting a 1 is then equal to z
c

,
regardless of z and c. In other words, (θint)z =

z
c

for 0 6 z 6 c. This is known to be one
of the strongest pirate strategies, and the exact asymptotics of the simple capacity for the
interleaving attack were previously also derived by Huang and Moulin.

Proposition 3.2. [HM12b, Theorem 6] The simple capacity for the interleaving attack is:

Cs(θint) =
1

2c2 ln 2
+O

(
1
c4

)
, (3.11)

and the maximizing value of p is psint =
1
2 .

Surprisingly, fighting against arbitrary unknown pirate attacks is as hard as fighting
against the interleaving attack, as both require an asymptotic code of length 2c2 lnn to
trace the colluders.

3.2.2 – All-1 attack. Another commonly considered attack in fingerprinting is the all-
1 attack, where pirates output a 1 whenever they can [CXFF09,Laa13a,MF11a,OŠD15].
Due to the marking assumption they are forced to output a 0 when they did not receive
any ones, but otherwise a coalition using the all-1 attack will always output a 1. In other
words, (θall1)z = 1{z > 0}. The following result shows that this attack is significantly
weaker than the interleaving attack.

Proposition 3.3. The simple capacity and the corresponding maximizing value of p for the
all-1 attack are:

Cs(θall1) =
ln 2
c

+O

(
1
c2

)
, psall1 =

ln 2
c

+O

(
1
c2

)
. (3.12)

Proof. First, consider a, a0 and a1. Using θz = 0 if z = 0 and θz = 1 otherwise, we get

a =

c∑
z=0

(
c

z

)
pz(1 − p)c−zθz = 1 − (1 − p)c. (3.13)

Working out a0 and a1 in a similar way, we get a0 = 1 − (1 − p)c−1 and a1 = 1. For
ease of notation, let us write s = (1 − p)c and I(p) = Is(p,θall1), so that we get

I(p) = pd (1‖1 − s) + (1 − p)d

(
s

1 − p

∥∥∥s) . (3.14)

Now, consider the second term in (3.14). For large c, we will argue that this term is small
regardless of p:

(1 − p)d(s
1−p ‖ s) = −s log2(1 − p) + (1 − p− s) log2

(
1 − p− s

(1 − p)(1 − s)

)
(3.15)

= −s log2(1 − p) + (1 − p− s) log2

(
1 −

ps

(1 − p)(1 − s)

)
. (3.16)

28 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

Noting that ps
(1−p)(1−s) = O(1

c
) and ps = O(1

c
) for all p, we obtain

(1 − p)d(s
1−p ‖ s) = −s log2(1 − p) +

1 − p− s

ln 2

[
−ps

(1 − p)(1 − s)
+O

(
1
c2

)]
(3.17)

(b)
= +

ps

ln 2
−
ps

ln 2

[
1 −

ps

(1 − p)(1 − s)
+O

(
1
c2

)]
(3.18)

(c)
= +

ps

ln 2
−
ps

ln 2
+O

(
1
c2

)
= O

(
1
c2

)
. (3.19)

Here (b) follows from p2s = O(1
c2), and (c) follows from p2s2

(1−p)(1−s) = O(1
c2) and

p2s2 = O(1
c2) for arbitrary p. These bounds can all be derived by investigating the given

expressions for p, looking for extreme values, and verifying that even for these values of
p the bounds hold. So we are now left with:

I(p) = −p log2(1 − s) +O

(
1
c2

)
. (3.20)

For p to attain the global maximum we need either that I ′(p) = 0 or p should be one
of the end-points 0 or 1. For p → 0 or 1 we get I(p) → 0, so we need to find a value
p ∈ (0, 1) with I ′(p) = 0. Writing out the remaining term and differentiating, this
condition is equivalent to

cps

(1 − p)(1 − s)
= − ln(1 − s). (3.21)

Since the left hand side is O(1) regardless of p, the right hand side must be too, so
s = 1 − o(1) is excluded. To exclude the case s = o(1) we rewrite (3.21) to get

cp

1 − p
=

1 − s

s
ln
(

1
1 − s

)
. (3.22)

Now if s = o(1) then the right hand side becomes 1 − o(1), which implies in the left
hand side that p = 1

c
− o(1

c
), which implies that s 6= o(1), contradicting our assumption

that s = o(1). So for large c a maximum can only occur at o(1) < s < 1 − o(1).
Suppose that s(c) → s∗ ∈ (0, 1) for c → ∞, with s∗ 6= s∗(c) not depending on c. Then
p(c)→ p∗ = −1

c
ln s∗, so the condition on p and s is then asymptotically equivalent to:

s∗ ln s∗ = (1 − s∗) ln(1 − s∗) +O

(
1
c

)
. (3.23)

This has a unique solution at s∗ = 1
2 + O(1

c
), leading to the given values of psall1 and

Cs(θall1).

In terms of code lengths, this means that any simple decoding algorithm for the all-1
attack requires a code of length of at least ` ∼ c log2n

ln 2 ≈ 2.08c lnn for large c and n. This
initially seems to contradict previous results of [Laa13a], which suggested that under a
certain Gaussian assumption, only ` ∼ 2c lnn fingerprint positions are required using
Oosterwijk–Škorić–Doumen’s decoding scheme [OŠD13]. This apparent contradiction is

3.2. SIMPLE CAPACITIES 29

caused by the fact that the Gaussian assumption does not hold in the regime of small p =
O(1

c
), for which those results were derived. Rigorous analysis of the scores in [Laa13a]

shows that with that scheme, an asymptotic code length of about ` ≈ 3c lnn is sufficient
when p ∼ 1

c
ln(2), which is well above the lower bound obtained above. Note that this

also implies that the decoding scheme of [OŠD13] is asymptotically suboptimal for the
all-1 attack.

3.2.3 – Majority voting. The majority voting attack [BS12,CXFF09,FPF09a,Laa13a,
MF12, OŠD15] is characterized by the colluders choosing the symbol which they have
received the most often. To avoid ambiguity in the definition of (θmaj)c/2 for even c, we
will assume c is odd in which case the attack is described by (θmaj)z = 1{z > c

2 }. For this
attack we obtain the following result.

Proposition 3.4. For the majority voting attack, the simple capacity is

Cs(θmaj) =
1

πc ln 2
+O

(
1
c2

)
, (3.24)

and the maximizing value of p is psmaj =
1
2 .

Proof. As mentioned before, to avoid ambiguity we will focus on the case where c = 2ĉ+1
is odd, and due to symmetry w.l.o.g. we may assume that p 6 1

2 . First, we have:

a =

2ĉ+1∑
z=ĉ+1

(
2ĉ+ 1
z

)
pz(1 − p)2ĉ+1−z, (3.25)

and a0 and a1 satisfy a0 = a + pu and a1 = a − (1 − p)u, where u =
(2ĉ
ĉ

)
pĉ(1 − p)ĉ.

Now if p = O(1
c
), then a1 and a0 quickly approach 0 leading to I(p) = Is(p,θmaj) =

o(1
c
). For the remaining case p = ω(1

c
) we expand a using Sanov’s theorem [CT06,

Theorem 11.4.1] we get

a ∼ exp
[
(2ĉ+ 1) ln(2)d

(
1
2‖p

)]
∼ pĉ+

1
2 (1 − p)ĉ+

1
2 22ĉ+1. (3.26)

Using Stirling’s formula for the central binomial coefficient in u, we obtain

u =

(
2ĉ
ĉ

)
pĉ(1 − p)ĉ ∼

22ĉpĉ(1 − p)ĉ√
πĉ

. (3.27)

As a consequence, u
a
= o(1), and using (3.8) we get

d(a0‖a) ∼
p2u2

2a(1 − a) ln 2
, d(a1‖a) ∼

(1 − p)2u2

2a(1 − a) ln 2
. (3.28)

Combining these expressions, we get

I(p) = pd(a1‖a) + (1 − p)d(a0‖a) ∼
24ĉp2ĉ+1(1 − p)2ĉ+1

2π ĉ a(1 − a) ln 2
. (3.29)

30 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

To see that this has a maximum at p = 1
2 , writing out the inverse of the above expression

(ignoring constants) we see that, in terms of p,

1
I(p)

∝
ĉ∑

z1,z2=0

(
2ĉ+ 1
z1

)(
2ĉ+ 1
z2

)(
p

1 − p

)z1−z2

(3.30)

= C1 + C2

∑
z1<z2

[(
p

1 − p

)z2−z1

+

(
1 − p

p

)z2−z1
]

(3.31)

= C1 + C2

∑
z1<z2

[2 cosh((z2 − z1) ln x)] , (3.32)

where x = 1−p
p
> 1 for p < 1

2 and x = 1 if p = 1
2 , and C1,C2 are expressions that do not

depend on p. The function between square brackets is positive and increasing in x for
x > 1, so it has a global minimum at x = 1, corresponding to p = 1

2 . So the maximum
for I(p) is attained at p = 1

2 , in which case u satisfies

u =

√
2
πc

(
1 +O

(
1
c

))
. (3.33)

To get exact asymptotics for I(1
2), we return to the expression for I(p) of (3.8). Since

from (3.25) it follows that a = 1
2 , and both terms are identical, using (3.9) we obtain:

I

(
1
2

)
= d

(
1
2
+
u

2

∥∥∥ 1
2

)
=

u2

2 ln 2
+O(u4). (3.34)

Combining this with the previous expression for u, we obtain the claimed result.

This result matches the bounds obtained in [Laa13a], which showed that with an
almost trivial decoding algorithm of assigning users a score of +1 for a match and −1 for
a mismatch, we asymptotically achieve a code length of ` ∼ πc lnn for large n and c.

3.2.4 – Minority voting. As the name suggests, when pirates use the minority vot-
ing attack [BS12, CXFF09, FPF09a, Laa13a, OŠD15], they output the symbol they have
received the least often. Due to the marking assumption they are not able to output sym-
bols they have not received, so in the binary setting the attack is defined as (θmin)z =
1{0 < z < c

2 or z = c}, where we again assumed for convenience that c is odd. As shown
below, this attack has the same simple capacity as the all-1 attack.

Proposition 3.5. The simple capacity and the corresponding optimal value of p for the
minority voting attack are:

Cs(θmin) =
ln 2
c

+O

(
1
c2

)
, psmin =

ln 2
c

+O

(
1
c2

)
. (3.35)

Proof. In this case the function I(p) is symmetric around p = 1
2 , so w.l.o.g. we may

assume p 6 1
2 . For small values of p, minority voting is equivalent to the all-1 attack up

to negligible order terms, while for p ≈ 1
2 the attack is very similar to majority voting

by θmin ≈ 1 − θmaj. This means that for small p the mutual information payoff will be
asymptotically equivalent to that of the all-1 attack, while for p ≈ 1

2 we get the same
values as for majority voting. Since the simple capacity for the all-1 attack is higher than
for majority voting, the distributor should choose p close to psall1, leading to the result.

3.2. SIMPLE CAPACITIES 31

3.2.5 – Coin-flip attack. Instead of choosing a pirate at random and outputting his
symbol (the interleaving attack), the pirates may also decide to choose a symbol at ran-
dom from their set of received symbols, without paying attention to how often they re-
ceived each symbol [BS12, FPF09a, Laa13a, OŠD15]. In other words, when a coalition
receives both symbols, they let a fair coin-flip decide which symbol to output. This means
that the collusion channel satisfies (θcoin)z =

1
2 (1{z > 0}+1{z = c}). This pirate attack is

weaker than the interleaving attack, but stronger than the other pirate attacks considered
above, as the following result shows.

Proposition 3.6. For the coin-flip attack, the simple capacity and the corresponding maxi-
mizing value of p are:

Cs(θcoin) =
ln 2
4c

+O

(
1
c2

)
, pscoin =

ln 2
2c

+O

(
1
c2

)
. (3.36)

Proof. Since I(p) is symmetric around p = 1
2 , let us assume w.l.o.g. that p 6 1

2 . For a,
a0 and a1 we obtain:

a = 1
2 (1 + pc − (1 − p)c) , a0 = 1

2

(
1 − (1 − p)c−1

)
, a1 = 1

2

(
1 + pc−1

)
. (3.37)

For the mutual information I(p) = Is(p,θcoin) we obtain

I(p) = pd

(
1
2

(
1 + pc−1

) ∥∥∥1
2
(1 + pc − (1 − p)c)

)
(3.38)

+ (1 − p)d

(
1
2

(
1 − (1 − p)c−1

) ∥∥∥1
2
(1 + pc − (1 − p)c)

)
. (3.39)

As p 6 1
2 , the terms pc and pc−1 are exponentially small in c and thus negligible, so up

to small order terms we get

I(p) = pd
(

1
2

∥∥∥ 1
2 (1 − (1 − p)c)

)
+ (1 − p)d

(
1
2

(
1 − (1 − p)c−1

) ∥∥∥ 1
2 (1 − (1 − p)c)

)
.

(3.40)

Similar to the proof of the all-1 attack, the second term is O(1
c2), while using (3.10) we

can rewrite the first term to a recognizable form:

I(p) =
1
2

[
−p log

(
1 − (1 − p)2c

)]
+O

(
1
c2

)
. (3.41)

The term between square brackets is exactly the dominating term for the simple capac-
ity of the all-1 attack for c0 = 2c colluders. In other words, if we denote the mutual
information corresponding to given p,θ, c by Is(c)(p,θ), we have:

Is(c)(p,θcoin) =
1
2
Is(2c)(p,θall1) +O

(
1
c2

)
. (3.42)

Using Proposition 3.3, the result follows.

For this attack, the result in [Laa13a] based on Oosterwijk–Škorić–Doumen’s de-
coder [OŠD15] was again too optimistic due to the Gaussian assumption. Any simple
decoder that successfully defends against the coin-flip attack must have a code length of
at least ` ∼ 4c log2n

ln 2 ≈ 8.33c lnn for large c and n.

32 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

3.2.6 – Numerical evaluation. Finally, to get a basic idea how accurate these asymp-
totic expressions are, Figure 3.1 shows the (normalized) simple capacities for various
pirate strategies as a function of p, evaluated for the case c = 15. The marked points
correspond to the asymptotic optimal values derived above, and one can see that these
quite closely resemble the actual maximizing values of p and corresponding values of the
capacity.

3.3 — Joint capacities

Where a simple decoder bases its decision to accuse user j only on the jth code word
of X (and not on other code words), a joint decoder is allowed to use all information
available to make a more informed decision. In particular, the whole code X may be taken
into account. Huang and Moulin [HM09a, HM09b, HM10, HM12b] previously studied
joint capacities as well, and showed that given a set of allowed collusion channels Pc and
a set of allowed encoders Pe, a fingerprinting rate Rj is achievable by a joint decoder if
and only if

Rj 6 Cj(Pe,Pc) = max
FP∈Pe

min
θ∈Pc
EPIj(p,θ), (3.43)

where Ij(p,θ) = 1
c
I(X1, . . . ,Xc; Y|P = p) is the mutual information between all colluder

symbols X1, . . . ,Xc and the pirate output Y in one segment i. Note that from the assump-
tion that Y only depends onX1, . . . ,Xc throughθ, it follows that I(X1, . . . ,Xc; Y|P = p) =
I(Z; Y|P = p), where Z =

∑c
i=1 Xi. To study the payoff function Ij(p,θ) = I(Z; Y|P =

p), we will use the following identity [HM12b, Equation (59)]:

Ij(p,θ) =
1
c
[h(a) − ah] , ah =

c∑
z=0

(
c

z

)
pz(1 − p)c−zh(θz). (3.44)

Here h(·) denotes the binary entropy function, defined by h(α) = −α log2 α − (1 −
α) log2(1 − α). Given p and θ, this allows us to compute Ij(p,θ) explicitly. In the
analysis of specific models θ, we will again commonly omit θ as an argument of I and
write I(p).

For obtaining the joint capacities for various models, we will extensively work with the
binary entropy function. Again, this function can be quite ugly for arbitrary arguments α,
but in some cases we can somewhat simplify the expressions. For instance, for arguments
close to 0 or 1

2 we have

h(γ) =
γ(1 − lnγ)

ln 2
−O(γ2) = O(γ lnγ), (3.45)

h

(
1
2
± γ

)
= 1 −

2γ2

ln 2
−O(γ4) = 1 −O(γ2). (3.46)

The most important properties to keep in mind are that h(0) = h(1) = 0 and h takes its
maximum atα = 1

2 with h(1
2) = 1. Using only these latter properties, we immediately get

the following lemma regarding deterministic attacks, i.e., attacks satisfying θ ∈ {0, 1}c+1.

3.3. JOINT CAPACITIES 33

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

(a) Interleaving attack (simple)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

(b) Interleaving attack (joint)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(c) All-1 attack (simple)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(d) All-1 attack (joint)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(e) Majority voting (simple)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(f) Majority voting (joint)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(g) Minority voting (simple)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(h) Minority voting (joint)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4

(i) Coin-flip attack (simple)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4

(j) Coin-flip attack (joint)

Figure 3.1: Normalized capacities for various attack, evaluated for c = 15. Points indicate asymptotic optima.

34 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

Lemma 3.7. For any deterministic attack θ satisfying the marking assumption θ0 = 0 and
θc = 1, the joint capacity equals Cj(θ) = 1

c
, and p is a maximizing value if it satisfies

a =
∑

z: θz=1

(
c

z

)
pz(1 − p)c−z =

1
2

. (3.47)

Proof. Since θz ∈ {0, 1} for all z, we have h(θz) = 0 for each z, so ah = 0 and it thus
follows that

Cj(θ) = max
p∈(0,1)

1
c
[h(a) − ah] =

1
c

max
p∈(0,1)

h(a). (3.48)

Since a = a(p) is continuous in p, and a(0) = 0 and a(1) = 1 due to the marking
assumption, from the intermediate value theorem it follows that there must be a value
p ∈ (0, 1) for which a(p) = 1

2 . So we get

Cj(θ) =
1
c

max
p∈(0,1)

h(a) =
1
c
h

(
1
2

)
=

1
c

, (3.49)

and p is a maximizing value iff a(p) = 1
2 .

This lemma makes finding the joint capacities and the optimal values of p very easy
for several of the following models.

3.3.1 – Interleaving attack. We previously saw that the simple capacity for the in-
terleaving attack (with (θint)z = z

c
) is proportional to 1

c2 . The asymptotics for the joint
capacity were previously studied by Huang and Moulin as well [HM09a, Section 4.2],
but only numerical evidence was provided to support that the capacity is approximately
1.160/(2c2 ln 2). After inspecting the joint capacity asymptotics, we eventually obtain
the following expression, which does not seem solvable by elementary functions.

Proposition 3.8. The joint capacity for the interleaving attack θint is:

Cj(θint) =
β

c2 +O

(
1
c4

)
, pjint =

α

c
, (3.50)

where α ≈ 1.3382 is the maximizing value (and β ≈ 0.8371 is the maximum value) of

β = max
α>0

{
−α log2 α+

α

eα

∞∑
z=1

αz

z!
log2(1 + z)

}
. (3.51)

Proof. Due to symmetry, w.l.o.g. let us assume that p 6 1
2 , and suppose that p = α

c
for

some α. From the expressions for I(p) = Ij(p,θint) and θint, we obtain:

I(p) =
1
c

[
h
(α
c

)
−

c−1∑
z=1

(
c

z

)(α
c

)z (
1 −

α

c

)c−z
h
(z
c

)]
. (3.52)

For α = ω(1) (i.e. 1/α = o(1)), I(p) is asymptotically equal to (2c2 ln 2)−1. This can be
seen by expanding h(z

c
) around z = cp using a Taylor series expansion, so that

h(z
c
) = h(p) + (z

c
− p)h ′(p) + 1

2 (
z
c
− p)2h ′′(p) + 1

6 (
z
c
− p)3h(3)(p) + (3.53)

3.3. JOINT CAPACITIES 35

Substituting this expansion into the expression for I, we obtain

I(p) =
1
c

c∑
z=0

(
c

z

)
pz (1 − p)c−z

[
h(p) − h

(z
c

)]
(3.54)

= −
1
c

c∑
z=0

(
c

z

)
pz (1 − p)c−z

[
(z
c
− p)h ′(p) + 1

2 (
z
c
− p)2h ′′(p) + . . .

]
(3.55)

(a)
=

1
2c2 ln 2

−
1
c

c∑
z=0

(
c

z

)
pz (1 − p)c−z

[
1
6 (
z
c
− p)3h(3)(p) + . . .

]
. (3.56)

Here (a) follows from noting that the linear term in z
c
−p evaluates to 0 (as E[Z] = cp),

and the quadratic term evaluates to (2c2 ln 2)−1 (as Var(Z) = cp(1 − p) and h ′′(p) =
− 1
p(1−p) ln 2).

Now, for α = Θ(c) the remaining term can be bounded by o(c−2) by writing out
the derivatives of h as h(k)(p) = (k − 2)!((−p)−k+1 − (1 − p)−k+1) and bounding
the resulting expressions appropriately. The result that for fixed p ∈ (0, 1) the payoff is
asymptotically equal to (2c2 ln 2)−1 also follows from [HM12b, Section V].

For α = o(c) and α = ω(1), proving that the payoff does not lead to a global maxi-
mum can be done as follows. First, we find two functions h0 and h1 which are lower and
upper bounds on h on the biggest part of the interval of z, say z = z0 up to z = c − z0,
where z0 = Θ(cp). This can be done by taking the Taylor expansion above, and using
bounds on the fourth derivative. Then we split the summation in I into a summation over
small z 6 z0, a summation over z0 < z < c − z0, and a summation over z > c − z0.
For the two tails, we establish that the contribution is small for this choice of z0, while
the middle terms are bounded from above and below by (2c2 ln 2)−1 +o(c−2) due to our
choices of h0 and h1. For complete details on this part, see [McK15].

Finally, if we assume that α = O(1) is at most constant, it is clear that the dominating
terms in the summation in I(p) come from small values z. In that case we can simplify
various expressions, as (i) h(α

c
) ∼ α

c
(1 − log2(

α
c
)), (ii)

(
c
z

)
∼ cz

z! , (iii) (1 − α
c
)c−z ∼ e−α,

and (iv) h(z
c
) ∼ z

c
(1 − log2(

z
c
)). Substituting these expressions, we obtain

I(p) ∼
1
c

[
α

c

(
1 − log2

α

c

)
−

c−1∑
z=1

cz

z!

(α
c

)z
e−α

z

c

(
1 − log2

z

c

)]
(3.57)

∼
1
c2

[
α− α log2 α+ α log2 c−

c−1∑
z=1

αz

z!
e−α (z− z log2 z+ z log2 c)

]
. (3.58)

Next, note that the term z+ z log2 c = z(1+ log2 c) in the summation corresponds to the
first moment of the Poisson distribution, which leads to a term α(1 + log2 c), canceling
out two terms before the summation. This leaves us with

I(p) ∼
1
c2

[
−α log2 α+

c−1∑
z=1

αz

z!
e−αz log2 z

]
. (3.59)

One can eliminate the factor z inside the summation by canceling it with the factor z in
the factorial, pulling out a factor α from the summation, and substituting z ′ ← z − 1 in

36 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

the summation. Finally, as c→∞, this leads to

I(p) ∼
1
c2

[
−α log2 α+

α

eα

∞∑
z=0

αz

z!
log2(1 + z)

]
. (3.60)

The summation on the right can be read as an expectation of log2(1 + Z), where Z fol-
lows a Poisson distribution with parameter α. Alternatively, one might try to replace the
logarithm with a Taylor expansion and note that this leads to a summation of Bell poly-
nomials evaluated at α. Neither method seems to lead to a more explicit expression for
the capacity, and the expression above is easy to compute and converges rather quickly.
Numerically finding the optimal value of α, maximizing the capacity, then leads to the
claimed numbers for α and β.

Numerical evaluation of the capacity previously led Huang and Moulin to the same
asymptotic constant β ≈ 0.8371 ≈ 1.1604

2 ln 2 [HM09a, Section 4.2].

3.3.2 – All-1 attack. Since the all-1 attack ((θall1)z = 1{z > 0}) is a determinis-
tic attack and satisfies the marking assumption, the capacity follows immediately from
Lemma 3.7, and finding the optimal value of p is straightforward.

Proposition 3.9. For the all-1 attack, the joint capacity and maximizing value of p are:

Cj(θall1) =
1
c

, pjall1 =
ln 2
c

+O

(
1
c2

)
. (3.61)

To be precise, the optimal value for p is p = 1 − 2−1/c.

3.3.3 – Majority voting. Lemma 3.7 also applies to the majority voting attack, defined
as (θmaj)z = 1{z > c

2 }, and since this attack is symbol-symmetric the optimal value for p
is trivially p = 1

2 .

Proposition 3.10. For the majority voting attack, the joint capacity and the corresponding
optimal value of p are:

Cj(θmaj) =
1
c

, pjmaj =
1
2

. (3.62)

Note that the joint capacity for majority voting is equal to the joint capacity of the
all-1 attack, while their simple capacities differ. Also note that again, the optimal value
for p is asymptotically the same as for the simple capacity.

3.3.4 – Minority voting. Since the minority voting attack (θmin)z = 1{0 < z < c
2 } +

1{z = c} is also a deterministic and symbol-symmetric attack, the following result directly
follows from Lemma 3.7.

Proposition 3.11. The joint capacity and a corresponding optimal value of p for the mi-
nority voting attack are:

Cj(θmin) =
1
c

, pjmin =
1
2

. (3.63)

3.4. ARBITRARY ATTACKS 37

In fact, there are three values of p that are asymptotically optimal, the other two
being p ≈ ln 2

c
and p ≈ 1− ln 2

c
. That these other values are also optimal (up to first order

constants) follows from the fact that the difference between the minority voting attack
and the all-1 attack vanishes for large c and p = ln 2

c
. By symmetry, the value p = 1− ln 2

c

leads to the same capacity as p = ln 2
c

.

3.3.5 – Coin-flip attack. Besides the interleaving attack, the only other non-trivial
fingerprinting attack with respect to joint capacities is the coin-flip attack. This attack is
not deterministic, so ah > 0. Working out the details, we obtain the following result.

Proposition 3.12. For the coin-flip attack, the joint capacity and maximizing value of p
are:

Cj(θcoin) =
log2(

5
4)

c
+O

(
1
c2

)
, pjcoin =

ln(5
3)

c
+O

(
1
c2

)
. (3.64)

Proof. For ah, note that h(θ0) = h(θc) = 0 and h(θz) = 1 otherwise, so ah = 1 − pc −
(1 − p)c. For a, recall from the proof of Proposition 3.6 that a = 1

2 (1 − (1 − p)c + pc).
Combining the above, we get

I(p) = Ij(p,θcoin) =
1
c

[
h

(
1 − (1 − p)c + pc

2

)
− (1 − pc − (1 − p)c)

]
. (3.65)

Since the attack is symbol-symmetric, w.l.o.g. we may assume that p 6 1
2 , in which case

the terms pc are negligible for large c. Writing t = 1 − (1 − p)c, we get

I(t) =
1
c

[
h

(
t

2

)
− t

]
+O

(
1
c2

)
. (3.66)

This function has a maximum at t = 1 − (1 − p)c = 2
5 , which leads to the given values

of pjcoin = 1 − 5
√

3/5 and Cj(θcoin).

3.3.6 – Numerical evaluation. The right half of Figure 3.1 shows the (normalized)
joint capacities for various pirate strategies as a function of p, also evaluated for the case
c = 15. Note that the figures on the left and on the right have the same axes, so the curves
on the right (joint capacities) are always at least as high as the curves on the left. The
marked points again correspond to the asymptotic optimal values derived in this section,
which closely resemble the actual maximizing value of p and corresponding optimal value
of the capacity.

3.4 — Arbitrary attacks

Let us now return to the setting that is by far the most considered setting in finger-
printing, where the pirate strategy is not known to the distributor, and the generation
of biases p is aimed at defending against arbitrary pirate strategies (that adhere to the
marking assumption). In other words, the set of allowed attacks can be described as

Pmark =
{
θ ∈ [0, 1]c+1 | θ0 = 0, θc = 1

}
. (3.67)

38 CHAPTER 3. NON-ADAPTIVE FINGERPRINTING CAPACITIES

3.4.1 – Simple capacities. For simple decoders, the result of the capacity for the in-
terleaving attack and the sufficiency result of the symmetric Tardos scheme immediately
lead to the following upper and lower bounds on the simple capacity for the uninformed
fingerprinting game Cs(Pmark), which are also stated in e.g. [HM12b, Corollary 2]:

2
π2c2 ln 2

® Cs(Pmark) ®
1

2c2 ln 2
. (3.68)

By a saddle-point analysis of [OŠD15, Proposition 17], showing that in case the arcsine
distribution function is used, the best attack against their scheme is the interleaving attack
(leading to an asymptotic code length of ` ∼ 2c2 lnn), it follows that the simple capacity
is asymptotically exactly equal to

Cs(Pmark) ∼
1

2c2 ln 2
. (3.69)

This implies that the simple decoder of Oosterwijk–Škorić–Doumen [OŠD15] achieves
capacity in the simple fingerprinting game.

3.4.2 – Joint capacities. The joint capacity game was previously solved by Huang
and Moulin, showing that assuming [HM12b, Condition 3] holds, due to a saddle-point
solution at the interleaving attack and the arcsine embedding distribution one has

Cj(Pmark)
?
∼

1
2c2 ln 2

. (3.70)

However, due to Proposition 3.8 we know that the interleaving attack and the arcsine
distribution do not form a saddle-point solution in the fingerprinting game for finite c,
as the embedder can choose FP differently to achieve a higher code rate. Therefore the
proof of (3.70) of Huang and Moulin is incorrect/incomplete, and the best asymptotic
bounds on the joint fingerprinting capacity are currently given by

1
2c2 ln 2

® Cj(Pmark) ®
β

c2 , (3.71)

where β ≈ 0.84 is defined in Proposition 3.8.

CHAPTER 4

Non-adaptive decoding schemes

4.1 — Overview

Context. In the previous chapter, we argued why looking at slightly simplified models
where the pirate strategy is completely known to the distributor may be a useful thing to
do, and we asked two questions: Can we find optimal solutions in case the tracer knows
exactly how the pirates will mix their copies? And what do ‘optimal solutions’ actually
correspond to for the case of known attacks?

As the previous chapter dealt with the latter question, showing that the results for
known pirate attacks have implications for the general setting as well, in this chapter
we will look at the former question: Can we construct decoding schemes that provably
achieve the capacities derived in the previous chapter for known pirate strategies? And
can the results for these simpler models also be applied to the general setting where the
pirate strategy is not assumed to be known to the distributor?

Known attacks. Using log-likelihood decoders, as motivated by the Neyman–Pearson
lemma, we show that we can obtain provable bounds on the code lengths that asymp-
totically have the optimal scaling for any known pirate strategy. More precisely: given a
pirate strategy, the simple log-likelihood decoder tailored against this pirate strategy will
always achieve the optimal simple code rate corresponding to this attack, and we can
provide explicit values of ` that provably satisfy given bounds on the false positive and
false negative error probabilities.

Whereas the question is relatively easy to answer for simple decoders, and asymp-
totically optimal accusation schemes can be designed similar to Tardos’ scheme [Tar03],
finding tight bounds on the error probabilities for joint decoders seems harder. Although
for most pirate strategies considered in the previous chapter we can show that the corre-
sponding joint decoder achieves capacity, and we can show that with high probability we
will always accuse the all-guilty tuple and never accuse the all-innocent tuple, proving
that these joint decoders always accuse the right set of users with probability at least 1−ε
for given c,n, ` is left as an open problem. The difficulty in proving this statement is best
explained by the existence of mixed tuples, consisting of both innocent and guilty users,
for which we are so far unable to prove that the tuple scores will always be below the
given threshold.

Arbitrary attacks. Besides studying decoders designed against specific attacks, we
also consider whether these decoders can be used against arbitrary attacks. Motivated

?This chapter is based on results from [Laa14,Laa16].

40 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

by previous results of Abbe and Zheng [AZ10], which were previously applied to finger-
printing by Meerwald and Furon [MF12], we take a look at the simple and joint decoders
designed against the interleaving attack, and show that both achieve an asymptotic code
length of ` ∼ 2c2 lnn. The simple decoder designed against the interleaving attack corre-
sponds to the following score function g, where g(x,y,p) is the score assigned to a user
who receives symbol x in a position where the colluders output symbol y and the bias is
p:

g(x,y,p) =

ln
(

1 + p
c(1−p)

)
if x = y = 0;

ln
(
1 − 1

c

)
if x 6= y;

ln
(

1 + 1−p
cp

)
if x = y = 1.

(4.1)

For 0 � p � 1 this decoder is asymptotically equivalent to the decoder of Oosterwijk–
Škorić–Doumen [OŠD13], which achieves the optimal scaling of ` as well [OŠD15]. How-
ever, as we will argue, due to not making a Gaussian assumption and purely looking at
the Neyman–Pearson motivated optimal decoder, we obtain a decoder which performs
better for p ≈ 0, 1, and in particular scores do not blow up for small p, allowing us to
eliminate the cutoffs on the bias distribution function and use the arcsine distribution
function without cutoffs. Choosing the code length ` and threshold η appropriately, we
can then defend against unknown attack strategies with an asymptotic code length of
` ∼ 2c2 lnn.

Outline. The remainder of this chapter is devoted to proving the results mentioned
above regarding optimal simple and joint decoding schemes. In Section 4.2 we study
simple decoding schemes in case the attack is known to the tracer, and in Section 4.3 we
do the same for joint decoders. Section 3.4 finally discusses the implications of these re-
sults for the uninformed setting, and how the decoders designed against the interleaving
attack allow us to defend against arbitrary pirate strategies as well.

4.2 — Simple decoders

In this section we will discuss simple decoders with explicit scheme parameters (code
lengths, accusation thresholds) that provably satisfy given bounds on the error probabil-
ities. The asymptotics of the resulting code lengths further show that these schemes are
capacity-achieving; asymptotically, the code lengths achieve the lower bounds that follow
from the simple capacities, as derived in Chapter 3.

We will follow the score-based framework introduced by Tardos [Tar03]. For simple
decoding, this means that a user j receives a score Sj of the form

Sj =
∑̀
i=1

Sj,i =
∑̀
i=1

g(xj,i,yi,pi), (4.2)

and he is accused iff Sj > η for some fixed threshold η. The function g is sometimes
called the score function. Note that since g depends on X only via Xj, any decoder that
fits this framework is a simple decoder.

4.2.1 – Simple log-likelihood decoders. Several different score functions have been
considered before [Laa13a,OŠD15,ŠKC08,Tar03], but in this chapter we will restrict our

4.2. SIMPLE DECODERS 41

attention to log-likelihood scores, which are known to perform well and which turn out
to be quite easy to analyze for known pirate strategies.

First, when building a decoder we naturally want to be able to distinguish between
two cases: user j is guilty or user j is not guilty. To do this, we assign scores to users
based on the available data, and we try to obtain an optimal trade-off between the false
positive error (accusing an innocent user) and the false negative error (not accusing a
guilty user). This problem is well known in statistics as a hypothesis testing problem,
where in this case we want to distinguish between the following two hypotheses H0 and
H1:

H0 : user j is innocent (j /∈ C), (4.3)

H1 : user j is guilty (j ∈ C). (4.4)

The Neyman–Pearson lemma [NP33] tells us that the most powerful test to distinguish
between H0 and H1 is to test whether the following likelihood ratio exceeds an appropri-
ately chosen threshold η ′′:

Λ(x,y,p) =
fH|X,Y ,P(H1|x,y,p)
fH|X,Y ,P(H0|x,y,p)

. (4.5)

Here fH|X,Y ,P(H1|x,y,p) denotes the probability that user j is guilty, based on the evi-
dence x,y,p. Using Bayes’ theorem, this can be rewritten to

Λ(x,y,p) =
fH|P(H1|p)

fH|P(H0|p)
·
fX,Y |P,H(x,y|p,H1)

fX,Y |P,H(x,y|p,H0)
. (4.6)

Taking logarithms, and assuming that different positions i are i.i.d., it is clear that testing
whether a user’s likelihood ratio exceeds η ′′ is equivalent to testing whether his score Sj
exceeds η ′ = lnη ′′ for ĝ defined as

ĝ(x,y,p) = ln
(
fH(H1)

fH(H0)

)
+ ln

(
fX,Y|P(x,y|p,H1)

fX,Y|P(x,y|p,H0)

)
. (4.7)

Alternatively, assuming that the a priori probabilities fH(H1) = P(j ∈ C) and fH(H0) =
P(j /∈ C) do not depend on j, and noting that scalings and translations of the score
function do not affect its performance, this is equivalent to testing whether a user’s score
Sj exceeds η = η ′ − C (for some constant C) for the score function g defined as

g(x,y,p) = ln
(
fX,Y|P(x,y|p,H1)

fX,Y|P(x,y|p,H0)

)
. (4.8)

Thus, the score function g from (4.8) corresponds to using a Neyman–Pearson score over
the entire code word Xj, and therefore g is in a sense optimal for minimizing the false
positive error for a fixed false negative error. Score functions of this form were previously
considered in the context of fingerprinting in e.g. [MF11a,PFF09].

4.2.2 – Theoretical evaluation. Let us investigate how we can choose ` and η so that
we can prove that the false positive and false negative error probabilities are bounded
from above by certain values ε0 and ε1. For the analysis below, we will make use of

42 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

the following function M, which is closely related to the moment-generating function of
scores in one position i for both innocent and guilty users. For fixed p, this function M
is defined on [0, 1] as

M(t) =
∑
x,y

fX,Y|P(x,y|p,H1)
tfX,Y|P(x,y|p,H0)

1−t. (4.9)

This function satisfies M(t) = E(etSj,i | p,H0) = E(e(t−1)Sj,i | p,H1).

Theorem 4.1. Let p and θ be fixed and known to the decoder. Let γ = ln(1/ε1)/ ln(n/ε0),
and let the code length ` and threshold η be chosen as

` =

√
γ(1 +

√
γ− γ)

− lnM(1 −
√
γ)

ln
(
n

ε0

)
, η = (1 − γ) ln

(
n

ε0

)
. (4.10)

Then with probability at least 1 − ε0 no innocent users are accused, and with probability at
least 1 − ε1 at least one colluder is caught.

Proof. For innocent users j, we would like to prove that P(j is accused) = P(Sj > η |

p,H0) 6 ε0
n

, where Sj is the user’s total score over all segments. If this can be proved,
then since innocent users have independent scores, it follows that with probability at
least (1− ε0

n
)n > 1− ε0 no innocent users are accused. We start by applying the Markov

inequality to eαSj for some α > 0:

P(Sj > η | p,H0) = P(eαSj > eαη | p,H0) 6
E(eαSj | p,H0)

eαη
=
M(α)`

eαη
. (4.11)

For a guilty user j, we would like to prove that P(j is not accused) = P(Sj < η | p,H1) 6
ε1. If we can prove this for an arbitrary colluder j, then clearly with high probability we
will accuse at least one of the traitors. Using Markov’s inequality with a fixed constant
β > 0, we analogously get

P(Sj < η | p,H1) = P(e−βSj > e−βη | p,H1) 6
E(e−βSj | p,H1)

e−βη
=
M(1 − β)`

e−βη
.

(4.12)

For both guilty and innocent users, we can now obtain bounds by choosing appropriate
values for α and β. Investigating the resulting expressions, we observe that good choices
for α,β leading to sharp bounds are α = 1−

√
γ and β =

√
γ. Substituting these choices

for α and β, and setting the bounds equal to the desired upper bounds ε0
n

and ε1, we get

P(Sj > η | p,H0) 6
M(1 −

√
γ)`

e−
√
γη

e−η =
ε0

n
, (4.13)

P(Sj < η | p,H1) 6
M(1 −

√
γ)`

e−
√
γη

= ε1. (4.14)

Combining these equations we obtain the value η given in (4.10), and solving for ` (using
e.g. that η = (1 − γ) ln(n/ε0)) then leads to the given expression for ` of (4.10).

Compared to previous papers analyzing provable bounds on the error probabilities,
such as [BT08,IŠO14,LdW14,ŠKC08,ŠVCT08,Tar03], the proof of Theorem 4.1 is remark-
ably short and simple. Note however that the proof that a colluder is caught assumes that
the attack used by the colluders is the same as the one the decoder is built against, and
that the actual value of ` is still somewhat mysterious due to the term M(1 −

√
γ).

4.2. SIMPLE DECODERS 43

4.2.3 – Practical evaluation. Before describing how the code lengths of Theorem 4.1
scale with n and c, note that Theorem 4.1 only shows that with high probability we
provably catch at least one colluder with this decoder. Although this is commonly the
best you can hope for when dealing with arbitrary attacks in fingerprinting1, if the attack
is colluder-symmetric it is actually possible to catch all colluders with high probability.
So instead we would like to be able to claim that with high probability, the set of accused
users equals the set of colluders. Similar to the proof for innocent users, we could simply
replace ε1 by ε1

c
, and argue that the probability of finding all pirates is the product of

their individual probabilities of getting caught, leading to a lower bound on the success
probability of (1 − ε1

c
)c > 1 − ε1. This leads to the following heuristic estimate for the

code length required to catch all colluders.

Heuristic 4.2. Let γ in Theorem 4.1 be replaced by γ ′ = ln(c/ε1)/ ln(n/ε0). Then with
probability at least 1−ε0 no innocent users are accused, and with probability at least 1−ε1

all colluders are caught.

The problem with this claim is that the pirate scores are related through Y , and so
they are not independent. As a result, we cannot simply take the product of the individual
probabilities (1 − ε1

c
) to get a lower bound on the success probability of 1 − ε1. On the

other hand, especially when the code length ` is large and ε1 is small, we do not expect
the event {Sj > η0} to tell us much about the probability of {Sj′ > η0} occurring for j ′ 6= j.
One might expect that {Sj′ > η0} does not become much less likely when {Sj > η0} occurs.
Proving a rigorous upper bound on the catch-all error probability is left for future work.

4.2.4 – Asymptotic code lengths. Let us now study how the code lengths from (4.10)
scale in terms of c and n. Focusing on the regime of large n (and fixed ε0 and ε1), it turns
out that the code length always has the optimal asymptotic scaling, regardless of p and
θ.

Theorem 4.3. For large n and fixed ε0 and ε1, the code length ` of Theorem 4.1 scales as

`(p,θ) =
log2 n

Is(p,θ)
[1 +O(

√
γ)], (4.15)

where Is(p,θ) is the mutual information pay-off defined in (3.4). As γ = o(1) for large n
and fixed ε0, ε1, we conclude that ` has the optimal asymptotic scaling.

Proof. Let us first study the behavior of M(1 −
√
γ) for small γ, by computing the first

order Taylor expansion of M(1 −
√
γ) around γ = 0. For convenience, below we will

abbreviate fX,Y|P(x,y|p,Hi) by f(x,y|p,Hi).

M(1 −
√
γ) =

∑
x,y

f(x,y | p,H1) exp
[
−
√
γ ln

(
f(x,y | p,H1)

f(x,y | p,H0)

)]
(4.16)

=
∑
x,y

f(x,y|p,H1)

[
1 −
√
γ ln

(
f(x,y|p,H1)

f(x,y|p,H0)

)
+O(γ)

]
. (4.17)

1In those cases attacks exist guaranteeing you will not catch more than one colluder, such as the ‘scapegoat’
strategy [LDR+13].

44 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

Here the second equality follows from the fact that if f(x,y | p,H1) = 0, then the factor
f(x,y | p,H1) in front of the exponentiation causes this term to be 0, while if f(x,y |

p,H1) > 0, then also f(x,y | p,H0) > 0 and thus their ratio is bounded and does not
depend on γ. Next, recognizing the first order term as the mutual information (in natural
units) between a colluder symbol X1 and the pirate output Y, we obtain:

M(1 −
√
γ) = 1 −

√
γ
∑
x,y

f(x,y|p,H1) ln
(
f(x,y|p,H1)

f(x,y|p,H0)

)
+O(γ) (4.18)

= 1 − Is(p,θ)
√
γ ln 2 +O(γ). (4.19)

Substituting this result in the original equation for `, and noting that the factor ε0 inside
the logarithm is negligible for large n, we finally obtain the result of (4.15).

Note that in the discussion above, we did not make any assumptions on p. In fact,
both Theorems 4.1 and 4.3 hold for arbitrary values of p; the decoder always achieves
the optimal code rate associated to that value of p. As a result, if we optimize and fix p
based on θ (using results from Chapter 3), we automatically end up with a decoder that
provably achieves capacity for this attack.

4.2.5 – Explicit attacks. Let us now consider specific pirate attacks which are often
considered in the fingerprinting literature, and investigate the resulting code lengths.
We will consider the same five attacks as in Chapter 3, which were also considered in
e.g. [CXFF09, FPF09a, HM12b, Laa13a, MF11a, MF12, OŠD15]. Using Theorem 4.1 we
can obtain exact, provable expressions for the code length ` in terms of θ,p, c,n, ε0, ε1.
Performing a Taylor series expansion around c = ∞ for the optimal values of p from
Chapter 3 we obtain the following expressions for ` in the optimal points p. Note that
`(θmin) ∼ `(θall1), and that these expressions are more precise than those of Theorem 4.3.

`(θint) = 2c2 ln
(
n

ε0

)[
1 +
√
γ− γ

1 −
√
γ

+O

(
1
c2

)]
, (4.20)

`(θall1) =
c ln

(
n
ε0

)
ln(2)2

[√
γ
(
1 +
√
γ− γ

)
ln 2

1 − 2−
√
γ

+O

(
1
c

)]
, (4.21)

`(θmaj) = πc ln
(
n

ε0

)[
1 +
√
γ− γ

1 −
√
γ

+O

(
1
c

)]
, (4.22)

`(θcoin) =
4c

ln(2)2 ln
(
n

ε0

) √
γ
(
1 +
√
γ− γ

)
ln 2

2 −
(

1 + 1√
2

)√γ
−
(

1 − 1√
2

)√γ +O

(
1
c

) . (4.23)

If we assume that both c → ∞ and γ → 0, then we can further simplify the above
expressions for the code lengths. The first terms between brackets all scale as 1+O(

√
γ),

so the leading terms of the code lengths are those terms outside the brackets.

4.3 — Joint decoders

In this section we will discuss informed joint decoders which we conjecture are able
to find colluders with shorter code lengths than simple decoders. The asymptotics of the

4.3. JOINT DECODERS 45

resulting code lengths motivate why these schemes seem to be optimal, but some open
problems remain for proving that they are indeed optimal.

Following the score-based framework for joint decoders of Moulin [Mou08], to tuples
T of size c we assign a score of the form

ST =
∑̀
i=1

ST,i =
∑̀
i=1

g(xT,i,yi,pi). (xT,i = {xj,i : j ∈ T}) (4.24)

Note that if θ is colluder-symmetric, then this is equivalent to

ST =
∑̀
i=1

g(zT,i,yi,pi), (4.25)

where zT,i =
∑
j∈T xj,i is the tally of the number of ones received by the tuple T in

position i. For the accusation phase, we now accuse all users in T iff ST > η for some
fixed threshold η. Note that this accusation algorithm is not exactly well-defined, since
it is possible that a user appears both in a tuple that is accused and in a tuple that is not
accused. For the analysis we will assume that the scheme is only successful if the single
tuple consisting of all colluders has a score exceeding η and no other tuples have a score
exceeding η, in which case all users in that guilty tuple are accused.

4.3.1 – Joint log-likelihood decoders. For building a joint decoder we would like to
be able to distinguish between the all-guilty tuple and other tuples, so a natural general-
ization of the hypotheses H0 and H1 for simple decoding would be H0 : T 6= C and H1 :
T = C. However, with this choice of H0, computing probabilities fZ,Y|P,H(z,y | p,H0)
is complicated: the event H0 does not completely determine fY|Z(y|z) without making
further assumptions on the a priori probabilities of users being colluders, since this prob-
ability depends on exactly how many colluders are present in T. To be able to compute
the likelihood ratios, we therefore use the following two hypotheses, which were also
used in e.g. [MF12]:

H0 : all users j ∈ T are innocent (T ∩ C = ∅), (4.26)

H1 : all users j ∈ T are guilty (T = C). (4.27)

We again use the corresponding log-likelihood ratio per position as our score function g,
which after rewriting is again equivalent to using the logarithm of the likelihood ratio
over all positions i as our score function:

g(z,y,p) = ln
(
fZ,Y|P,H(z,y | p,H1)

fZ,Y|P,H(z,y | p,H0)

)
. (4.28)

Using this joint score function g corresponds to the most powerful test according to the
Neyman–Pearson lemma [NP33], so g is in a sense optimal for distinguishing between
H0 and H1.

4.3.2 – Theoretical evaluation. Let us again study how to choose ` and η so that we
can prove that the false positive and false negative error probabilities are bounded from
above by certain values ε0 and ε1. Below we will again make use of the function M of
(4.9) where the simple hypothesesH0 andH1 have been replaced by the joint hypotheses
H0 and H1.

46 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

Theorem 4.4. Let p and θ be fixed and known to the decoder. Let γ = ln(1/ε1)/ ln(nc/ε0),
and let the code length ` and the threshold η be chosen as

` =

√
γ(1 +

√
γ− γ)

− lnM(1 −
√
γ)

ln
(
nc

ε0

)
, η = (1 − γ) ln

(
nc

ε0

)
. (4.29)

Then with probability at least 1 − ε0 none of the all-innocent tuples are accused, and with
probability at least 1 − ε1 the single all-guilty tuple is accused.

Proof. The proof is analogous to the proof of Theorem 4.1. Instead of n innocent and c
guilty users we now have

(
n
c

)
< nc all-innocent tuples and just 1 all-guilty tuple, which

changes some of the numbers in γ, η and ` above. We then again apply the Markov
inequality with α = 1−

√
γ and β =

√
γ to obtain the given expressions for η and `.

We remark that for deterministic strategies θ ∈ {0, 1}c+1, choosing the scheme pa-
rameters is much simpler. Similar to Lemma 3.7, which showed that for deterministic
attacks the joint capacity is exactly 1

c
, in this case we get a code length of ` ∼ c log2 n.

Theorem 4.5. Let θ be a deterministic attack, and let p be chosen such that fY|P(1|p) = 1
2 .

Let ` and η be chosen as:

` = log2

(
nc

ε0

)
, η = ln

(
nc

ε0

)
. (4.30)

Then with probability 1 − ε0 none of the all-innocent tuples are accused, and the single
all-guilty tuple will always be accused.

Proof. For deterministic attacks, we have

fZ,Y|P,H(z,y | p,H0) = fZ|P(z | p)fY|P(y | p), (4.31)

fZ,Y|P,H(z,y | p,H1) = fZ|P(z | p)fY|Z(y | z). (4.32)

As a result, the score function g satisfies

g(z,y,p) =

{
− ln fY|P(y|p) if θz = y;

−∞ if θz 6= y.
(4.33)

With the capacity-achieving choices of p of Lemma 3.7, we always have fY|P(y|p) = 1
2

for y = 0, 1 leading to a score of + ln 2 for a match, and −∞ for cases where yi does not
match the output that follows from θ and the assumption that T is the all-guilty tuple. For
T = C, clearly we will always have a match, so this tuple’s score will always be ` ln 2 = η,
showing that this tuple is always accused.

For innocent tuples, since f(z,y|p,H0) =
1
2f(z,y|p,H1) it follows that in each position

i, with probability 1
2 this tuple’s score will not be −∞. So with probability 2−`, the tuple’s

score after ` segments will not be −∞, in which case it equals ` ln 2. To make sure that
this probability is at most ε0/n

c so that the total error probability is at most ε0, we set
2−` = ε0/n

c, leading to the given expression for `.

Note that for deterministic attacks, any choice of −∞ < η0 6 η works just as well as
choosing η; after ` segments all tuples will either have a score of −∞ or η.

4.3. JOINT DECODERS 47

4.3.3 – Practical evaluation. Theorems 4.4 and 4.5 do not prove that we can actu-
ally find the set of colluders with high probability, since mixed tuples (consisting of some
innocent and some guilty users) also exist and these may or may not have a score exceed-
ing η. Theorem 4.4 only proves that with high probability we can find a set C ′ of c users
which contains at least one colluder. We expect that in most cases the only tuple with a
score exceeding η is the all-guilty tuple and all mixed tuples will have a score below η.
Proving that mixed tuples indeed get a lower score is left as an open problem.

4.3.4 – Asymptotic code lengths. To further motivate why using this joint decoder
may be the right choice, the following proposition shows that at least the resulting code
lengths are optimal. The proof is analogous to the proof of Theorem 4.3.

Theorem 4.6. For γ = o(1), the code length ` of Theorem 4.4 scales as

` =
log2 n

Ij(p,θ)
[1 +O(

√
γ)] , (4.34)

thus asymptotically achieving the joint capacity for arbitrary values of p.

Since the asymptotic code length is optimal regardless of p, these asymptotics are also
optimal when p is optimized to maximize the mutual information.

Finally, although it is hard to estimate the scores of mixed tuples with this decoder,
just like in [ODL14] we expect that the joint decoder score for a tuple is roughly equal
to the sum of the c individual simple decoder scores. So a tuple of c users consisting of
k colluders and c − k innocent users is expected to have a score roughly a factor k/c
smaller than the expected score for the all-guilty tuple. So after computing the scores for
all tuples of size c, we can get rough estimates of how many guilty users are contained in
each tuple, and we might try to find the set C ′ of c users that best matches these estimates.
There are several options for post-processing that may improve the accuracy of using this
joint decoder, which are left for future work.

4.3.5 – Explicit attacks. Using Theorem 4.4 we can obtain exact expressions for `
in terms of θ,p, c,n, ε0, ε1 for known attack strategies. For the optimal values of p of
Chapter 3 we can use Theorem 4.6 to obtain the following expressions. Note again that
`(θmin) ∼ `(θall1), and β is described in Chapter 3.

`(θint) =
c2 log2 n

β

[
1 +O

(
√
γ+

1
c

)]
, (4.35)

`(θall1) = c log2 n

[
1 +O

(
√
γ+

1
c

)]
, (4.36)

`(θmaj) = c log2 n

[
1 +O

(
√
γ+

1
c

)]
, (4.37)

`(θcoin) = c log5/4 n

[
1 +O

(
√
γ+

1
c

)]
. (4.38)

A code length with an explicit dependence on γ (and order terms only in c) can be ob-
tained as well using Taylor expansions of M(1 −

√
γ).

48 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

4.4 — Arbitrary attacks

While the previous sections described simple decoders designed against specific pirate
strategies, let us now return to the setting where θ is not known to the tracer.

4.4.1 – The simple interleaving decoder. Let us first investigate how we might build
a decoder that works against arbitrary attacks in fingerprinting. To build such a decoder,
Meerwald and Furon [MF12] previously noted that Abbe and Zheng [AZ10] proved in a
more general context that under certain conditions on the set of allowed pirate strategies
Pc, a decoder that works against the worst-case attack2 θ∗ ∈ Pc actually defends against
all attacks θ ∈ Pc. Recall that in this case the set of allowed pirate strategies we consider
is the set of all attacks satisfying the marking assumption Pc = Pmark = {θ ∈ [0, 1]c+1 |

θ0 = 0, θc = 1}.
For finite c, the worst-case attack in fingerprinting (from an information-theoretic

perspective) has been studied in e.g. [HM12b, MF12], but in general this attack is quite
hard to describe analytically. Since this attack is not so easy to analyze, let us therefore
focus on the regime of large c and n. Huang and Moulin [HM12b] previously proved
that for large coalitions, the optimal pirate attack in the simple decoding setting is the
interleaving attack. Combining this knowledge with the result of Abbe and Zheng, one
could speculate that a good choice for a universal decoder is the interleaving decoder,
designed against the interleaving attack. Working out the likelihood ratio in caseθ = θint,
we obtain the following score function g:

g(x,y,p) =

ln
(

1 + p
c(1−p)

)
if x = y = 0;

ln
(
1 − 1

c

)
if x 6= y;

ln
(

1 + 1−p
cp

)
if x = y = 1.

(4.39)

Let us take a closer look at this decoder. For fixed δ > 0, if we look at values p ∈ [δ, 1−δ]
and focus on the regime of large c, we can perform a Taylor series expansion around
c =∞ to get ln(1 + x) ∼ x. The resulting expressions then turn out to be closely related
to the Oosterwijk–Škorić–Doumen [OŠD15] decoder h:

c · g(x,y,p) ∼ h(x,y,p) =

+ p

1−p if x = y = 0;

−1 if x 6= y;

+ 1−p
p

if x = y = 1.

(4.40)

This implies that g and h are asymptotically equivalent in case p is sufficiently far away
from 0 and 1. Since for Oosterwijk–Škorić–Doumen’s score function one generally uses
cutoffs on fP (i.e. only using values p ∈ [δ, 1 − δ] for fixed δ > 0) to guarantee that
h(x,y,p) = o(c) (cf. [IŠO14]), and since the decoder [OŠD15] is known to achieve
capacity using these cutoffs, we immediately get the following result.

2Here, the worst-case attack is defined in an information-theoretic sense as the attack minimizing the
mutual information pay-off function for given c.

4.4. ARBITRARY ATTACKS 49

Proposition 4.7. The score function g of (4.39) together with the bias density function
(encoder) f(δ)P on [δ, 1 − δ] of the form

f
(δ)
P (p) =

1

(π− 4 arcsin
√
δ)
√
p(1 − p)

(4.41)

asymptotically achieve the simple capacity for uninformed fingerprinting when the same cut-
offs δ as those of [IŠO14] are used.

So combining the log-likelihood decoder tuned against the asymptotic worst-case at-
tack (the interleaving attack) with the arcsine distribution with cutoffs, we obtain a uni-
versal decoder that works against arbitrary attacks.

Cutting off the cutoffs. While Proposition 4.7 shows that when using cutoffs, the log-
likelihood decoder designed against the interleaving attack achieves capacity in the simple
fingerprinting model, the cutoffs δ have been a nagging inconvenience ever since Tardos
introduced them in 2003 [Tar03]. In previous settings it was well-known that this cutoff
δ had to be large enough to guarantee that innocent users are not falsely accused, and
small enough to guarantee that large coalitions can still be caught. For instance, when
using Tardos’ original score function, it was impossible to do without cutoffs, and the
same seems to hold for the decoder h as scores blow up for p ≈ 0, 1.

Looking at the universal log-likelihood decoder in (4.39), one thing to notice is that
the logarithm has a mitigating effect on the tails of the score distributions (cf. [Ško15]).
For 0 � p � 1 the resulting scores are roughly a factor c smaller than those obtained
with h, but where the blowup effect of h for small p is proportional to 1

p
, the function g

only scales as ln(1
p
) in the region of small p. This motivates the following claim, showing

that with this decoder g we finally do not need any cutoffs anymore!

Theorem 4.8. The decoder g of (4.39) and the arcsine distribution encoder f∗P(p), defined
on [0, 1] by

f∗P(p) =
1

π
√
p(1 − p)

, (4.42)

together asymptotically achieve the simple capacity for the uninformed fingerprinting game.

Proof. We will argue that using this new universal decoder g, the difference in perfor-
mance between using and not using cutoffs on fP is negligible for large c. Since the
encoder with cutoffs asymptotically achieves capacity, it then follows that without cutoffs
this scheme also achieves capacity. To do this, we will prove that all moments of innocent
user scores are finite. In that case, for large c from the Central Limit Theorem it follows
that the distributions of user scores will converge to Gaussians. If the scores of innocent
and guilty users are indeed Gaussian for large c, then as discussed in e.g. [OŠD15,ŠKC08]
all that matters for assessing the performance of the scheme are the mean and variance of
both curves. Similar to (4.49), the effects of small cutoffs of the distribution function fP
on the distribution of user scores are negligible as both means and variances stay the same
up to small order terms. So indeed, in both cases the ‘performance indicator’ [OŠD15]
asymptotically stays the same, leading to equivalent code lengths with and without cut-
offs.

50 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

So let us prove that all moments of user scores are finite, even if no cutoffs are used.
We will show that E[g(x,y,p)k] < ∞ for any x and y, so that after taking weighted
combinations we also get E(Skj,i|H0/1) < ∞. Let us consider the case where x = y = 1;
other cases can be analyzed in a similar fashion. Using the density function f∗P of (4.42)
and the function g from (4.39), we have

Ek = E[g(1, 1,p)k] =
∫1

0

dp

π
√
p(1 − p)

logk
(

1 +
1 − p

cp

)
. (4.43)

Splitting the interval [0, 1] into two parts [κ, 1] and [0, κ] (where κ depends on k but not
on c) we obtain

Ek =

∫1

κ

dp

π
√
p(1 − p)

logk
(

1 +
1 − p

cp

)
+

∫κ
0

dp

π
√
p(1 − p)

logk
(

1 +
1 − p

cp

)
.

(4.44)

Let us denote the two terms by Ek,1 and Ek,2 respectively. For the first term, we can
perform a Taylor series expansion to obtain:

Ek,1 =

∫1

κ

dp

π
√
p(1 − p)

logk
(

1 +
1 − p

cp

)
(4.45)

=

∫1

κ

dp

π
√
p(1 − p)

(
1 − p

cp
+O

(
(1 − p)2

c2p2

))k
(4.46)

6
∫1

κ

dp

π
√
p(1 − p)

(
1
cκ

+O

(
1
c2κ2

))k
(4.47)

(a)

6
∫1

κ

dp

π
√
p(1 − p)

< 1 <∞. (4.48)

Here (a) follows from considering sufficiently large c while κ remains fixed. (Note that
for large c we even have Ek,1 → 0.) For the other term we do not expand the logarithm:

Ek,2 =

∫κ
0

dp

π
√
p(1 − p)

logk
(

1 +
1 − p

cp

)
∝
∫κ

0

dp
√
p

logk
(

1
p

)
(b)→ 0. (4.49)

The last step (b) follows from the fact that the integration is done over an interval of
width κ, while the integrand scales as 1√

p
times less important logarithmic terms. For

arbitrary k, we can thus let κ = κ(k) → 0 as a function of k to see that this is always
bounded. Similar arguments can be used to show that for other values of x,y we also
have E[g(x,y,p)k] < 0.

Note that the same result does not apply to the score function h of Oosterwijk–Škorić–
Doumen [OŠD15], for which the effects of values p ≈ 0, 1 are not negligible. The main
difference is that for small p, the score function h scales as 1

p
, while the log-likelihood

decoder g only scales as ln(1/p). Figure 4.1 illustrates the difference in the convergence
of normalized innocent user scores to the standard normal distribution, when using the
score functions g and h against various different pirate strategies. These are experimental

4.4. ARBITRARY ATTACKS 51

-6 -4 -2 0 2 4 6
10-5

10-4

0.001

0.010

0.100

1

(a) The PDF fS|H(s|H0) of cumulative innocent user scores using the score function g

-6 -4 -2 0 2 4 6
10-5

10-4

0.001

0.010

0.100

1

(b) The PDF fS|H(s|H0) of cumulative innocent user scores using the score function h

Figure 4.1: Estimates of the probability density functions of normalized innocent user scores for c = 10 and ` =
10 000 based on 10 000 simulations of innocent user scores for each attack. The different lines correspond to
the interleaving attack (black), all-1 attack (red), majority voting (green), minority voting (blue), and the coin-
flip attack (yellow), while the gray dashed line corresponds to the standard normal distribution with fZ(z) ∝
exp(− 1

2z
2). Note that the drops near densities of 10−4 (the far ends of the curves) occur due to smoothening

the curve with only 104 samples, and do not accurately reflect the ends of the distribution tails.

results for c = 10 and ` = 10 000 based on 10 000 simulated scores for each curve, and
for both score functions we did not use any cutoffs. As we can see, using the Neyman–
Pearson decoder g, the normalized scores S̃j = (Sj−ESj)/

√
VarSj are almost Gaussian,

while using h the curves especially do not appear to be Gaussian for S̃j � 0; in most cases
the distribution tails are much too large. For the minority voting and coin-flip attack, the
curves do not even seem close to a normal distribution (cf. [Ško15]).

Designing a universal scheme. With the above result in mind, let us now briefly discuss
how to actually build a universal decoding scheme with the interleaving decoder g which

52 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

defends against arbitrary attacks. From Theorem 4.8 we know that for generating biases
we can simply use the arcsine distribution f∗P without cutoffs, and our decoder will be the
interleaving decoder g of (4.39). What remains is figuring out how to choose ` and η to
defend against arbitrary attacks.

First, it is important to note that the expected innocent and guilty scores per seg-
ment (µ0 = E(Sj,i|H0) and µ1 = E(Sj,i|H1)) and the variance of the innocent and guilty
scores (σ2

0 = Var(Sj,i|H0) and σ2
1 = Var(Sj,i|H1)) heavily depend on the collusion chan-

nel θ. This was not the case for Tardos’ original decoder [Tar03] and the symmetrized
decoder [ŠKC08], for which η could be fixed in advance regardless of the collusion strat-
egy. This means that we will either have to delay fixing η until the decoding stage, or
scale/translate scores per segment accordingly at each position i.

For choosing the code length ` and threshold η, let us focus on the regime of reason-
ably large c. In that case, as argued above the total innocent and guilty scores S0 and
S1 will behave like Gaussians, with parameters S0 ∼ N(`µ0, `σ2

0) and S1 ∼ N(`µ1, `σ2
1).

To distinguish between these two distributions, using e.g. Sanov’s theorem the code rate
(log2 n)/` should be proportional to the Kullback–Leibler divergence between the two
distributions:

d(S1‖S0) =
(µ1 − µ0)

2

σ2
0

+
1
2

(
σ2

1

σ2
0
− 1 − ln

σ2
1

σ2
0

)
. (4.50)

A similar expression appears in [ŠKC08, OŠD15], where it was noted that σ1 � σ0, so
that the first term is the most important term. In [IŠO14,OŠD15] the ratio (µ1−µ0)

2

σ2
0

was
coined the ‘performance indicator’, and it was argued that this ratio should be maximized.
In [OŠD15] it was further shown that when using their decoder h, this ratio is minimized
by the colluders when they use the interleaving attack θint. In other words: assuming
scores are Gaussian for large c, and assuming that the decoder score function is h, the
best attack the traitors can use is the interleaving attack.

Since the decoder g is very similar to h (by c · g ≈ h), a natural conjecture would
be that also for this new score function g, asymptotically the best pirate attack maximiz-
ing the decoder’s error probabilities is the interleaving attack. Experiments with g and
previous experiments of [OŠD15] with h indeed show that other pirate attacks generally
perform worse than the interleaving attack. As a result, a natural choice for selecting `
would be to base ` on the code length needed to deal with the (asymptotic) worst-case
attack for this decoder, the interleaving attack. And for the interleaving attack we know
how to choose ` by Theorem 4.1, Equation 4.20 and Theorem 4.3:

` =

√
γ(1 +

√
γ− γ)

− lnM(1 −
√
γ)

ln
(
n

ε0

)
(4.51)

= 2c2 ln
(
n

ε0

)[
1 +
√
γ− γ

1 −
√
γ

+O

(
1
c2

)]
(4.52)

= 2c2 lnn
[
1 +O

(
√
γ+

1
c2

)]
. (4.53)

Here the expressions are given in order of precision; the first is exact (in case the inter-
leaving attack is used), the second considers large-n asymptotics, and the third considers

4.4. ARBITRARY ATTACKS 53

both large-n and large-c asymptotics. These choices for ` seem reasonable estimates for
the code lengths required to deal with arbitrary attacks.

For choosing η, as argued before this parameter depends on the pirate strategy θ,
which may lead to different scalings and translations of the curves of innocent and guilty
user scores. What we could do is compute the parameters µ0/1,σ2

0/1 based on the pi-
rate output y empirically and normalize the scores accordingly. This means that after
computing user scores Sj, we apply the following transformation:

S̃j =
Sj − `µ0√
`σ0

. (4.54)

This guarantees that the scores of innocent users will roughly be distributed as N(0, 1),
and for guilty users this results in a distribution of the form N(

√
`(µ1−µ0

σ0
), σ

2
1
σ2

0
). To guar-

antee that the probability that an innocent user has a score below η is at least 1 − ε0
n

, it
then suffices to roughly let

η̃ =
η− `µ0√
`σ0

≈ Φ−1
(

1 −
ε0

n

)
∼

√
ln
(
n

ε0

)
, (4.55)

where Φ denotes the cumulative distribution function of the standard normal distribu-
tion N(0, 1). This means that after transforming the scores, the threshold can be fixed
independently of the pirate strategy.

Another simple universal decoder. Besides Oosterwijk–Škorić–Doumen’s approach us-
ing Lagrange multipliers, and the above Neyman–Pearson-based approach to obtaining ef-
ficient decoders, let us now mention a third way of obtaining a similar capacity-achieving
universal decoder.

To construct this decoder, we start with the empirical mutual information decoder
proposed by Moulin [Mou08], and for now let us assume pi ≡ p is fixed3. With this
decoder, a user is assigned a score of the form

Sj =
∑
x,y

f̂X,Y|P(x,y|p) ln

(
f̂X,Y|P(x,y | p)

f̂X|P(x | p)f̂Y|P(y | p)

)
, (4.56)

and again the decision to accuse user j or not depends on whether his score Sj exceeds
some fixed threshold η. Here f̂ is the empirical estimate of the actual probability f, i.e.,
f̂X,Y|P(x,y|p) = |{i : (xj,i,yi) = (x,y)}|/`. Writing out the empirical probability outside
the logarithm, and replacing the summation over x,y by a summation over the positions
i, this is equivalent to

Sj =
1
`

∑̀
i=1

ln

(
f̂X,Y|P(xj,i,yi | p)

f̂X,Y|P,H(xj,i,yi | p,H0)

)
. (4.57)

3When pi is not fixed and is drawn from a continuous distribution function fP , the empirical probabilities
considered in the text do not make much sense, as each value of pi only occurs once. In that case one could e.g.
build a histogram of values of p, and compute empirical probabilities for each bin, or discretize the distribution
function for p using e.g. discrete arcsine distributions described in Chapter 2.

54 CHAPTER 4. NON-ADAPTIVE DECODING SCHEMES

Now, this almost fits the score-based simple decoder framework, except that the empir-
ical probabilities inside the logarithm are not independent for different positions i. To
overcome this problem, we could try to replace the empirical probabilities f̂ by the actual
probabilities f, but to compute fX,Y|P(xj,i,yi|p) we need to know whether user j is guilty
or not. Solving this final problem using Bayesian priors, we get the following result.

Lemma 4.9. Approximating the empirical probabilities in the empirical mutual information
decoder using Bayesian priors (with P(j ∈ C) = c

n
), this decoder corresponds to using the

following score function m:

m(x,y,p) = ln
(

1 +
c

n

[
fX,Y|P,H(x,y|p,H1)

fX,Y|P,H(x,y|p,H0)
− 1
])

. (4.58)

Proof. The value of fX,Y|P,H(xj,i,yi|p,H0) can be computed without any problems, so let
us focus on the term fX,Y|P(xj,i,yi|p). Using Bayesian inference, we have:

fX,Y|P(x,y | p) = fH(H1)fX,Y|P,H(x,y | p,H1) + fH(H0)fX,Y|P,H(x,y | p,H0). (4.59)

Assuming an a priori probability of guilt of fH(H1) = P(j ∈ C) = c
n

and dividing by
fX,Y|P,H(x,y|p,H0) we get

fX,Y|P(x,y | p)

fX,Y|P,H(x,y | p,H0)
=
(c
n

)
·
fX,Y|P,H(x,y | p,H1)

fX,Y|P,H(x,y | p,H0)
+
(

1 −
c

n

)
· 1. (4.60)

Taking logarithms, this leads to the expression of (4.58).

Although this score function looks very similar to the Neyman–Pearson based log-
likelihood decoder g, there are some essential differences. For instance, for the all-1
attack we have g(1, 0,p) = −∞whilem(1, 0,p) = ln(1− c

n
) > −∞. For the interleaving

attack, for which we may again hope to obtain a universal decoder using this approach,
we do get a familiar result.

Corollary 4.10. For the interleaving attack, the Bayesian approximation of the empirical
mutual information decoder of (4.58) satisfies

m(x,y,p) =

ln
(

1 + p
n(1−p)

)
if x = y = 0;

ln
(
1 − 1

n

)
if x 6= y;

ln
(

1 + 1−p
np

)
if x = y = 1.

(4.61)

For values of p ∈ [δ, 1− δ] with δ > 0 and large c, this decoder is again equivalent to
both the log-likelihood score function g and Oosterwijk–Škorić–Doumen’s score function
h [OŠD13]:

n ·m(x,y,p) ∼ c · g(x,y,p) ∼ h(x,y,p). (4.62)

For p ≈ 0, 1 the logarithms in m guarantee that scores do not blow up, but due to the
factorn in the denominator (rather than the factor c, as in g) the scores relatively increase
more when p approaches 0 than for the score function g.

4.4. ARBITRARY ATTACKS 55

4.4.2 – The joint interleaving decoder. Let us finally consider the setting of defend-
ing against arbitrary attacks using a joint decoder. Through a series of reductions we
can prove that the joint interleaving decoder achieves an asymptotic code length of ` ∼
2c2 lnn. If the joint capacity for the uninformed setting is 1/(2c2 ln 2), this decoder is
then capacity-achieving for the joint setting.

Theorem 4.11. The joint log-likelihood decoder designed against the interleaving attack,
corresponding to the score function g defined by

g(z,y,p) =

{
ln(1 − z

c
) − ln(1 − p) if y = 0;

ln(z
c
) − ln(p) if y = 1.

(4.63)

and the arcsine distribution encoder f∗P of (4.42) together achieve an asymptotic code length
of ` ∼ 2c2 lnn.

Proof. We will prove that asymptotically, the proposed universal joint decoder is equiva-
lent to the universal simple decoder described above, and therefore achieves similar code
lengths for large c and n.

Suppose we have a tuple T of size c, and suppose in some segment i there are z users
who received a 1 and c−z users who received a 0. For now also assume that p ∈ [δ, 1−δ]
for some δ > 0 that does not depend on c. In case y = 0, the combined simple decoder
score of this tuple T (using the simple universal decoder g described previously) would
be:∑
j∈T

Sj,i = z ln
(

1 −
1
c

)
+ (c− z) ln

(
1 +

p

c(1 − p)

)
∼ −

z

c
+

(c− z)p

c(1 − p)
=
p− z/c

1 − p
.

(4.64)

On the other hand, if we look at this tuple’s joint score with the joint universal decoder
g of (4.63), we have

ST,i = g(z, 0,p) = ln
(

1 − z/c

1 − p

)
= ln

(
1 +

p− z/c

1 − p

)
∼
p− z/c

1 − p
. (4.65)

Note that the last step follows from the fact that for large c, with overwhelming probability
we have z = cp+O(

√
cp) (since Z is binomially distributed with mean cp and variance

cp(1 − p)), in which case (p − z/c)/(1 − p) = o(1). Combining the above, we have
that ST,i ∼

∑
j∈T Sj,i. So the joint universal decoder score for a tuple T is asymptotically

equivalent to the sum of the simple universal decoder scores for the members in this tuple,
if p ∈ [δ, 1 − δ].

Since as argued before the distribution tails [0, δ] and [1 − δ, 1] are negligible for the
performance of the scheme for sufficiently small δ, and since the same result holds for
y = 1, the simple and joint decoders are asymptotically equivalent and therefore achieve
equivalent code lengths.

CHAPTER 5

Sequential decoding schemes

5.1 — Overview

Context. In some scenarios, the pirate output is generated and distributed in real-
time, and might also be detected by the tracer in real-time. Think of live streams of
football matches, broadcast live on a pirate website. In this scenario, the tracer can adjust
future parts of the watermarks based on the pirate broadcast he has observed so far, and
may already be able to disconnect users before the broadcast is over. In this scenario the
tracer is clearly more powerful than in the non-adaptive setting; he can simply choose to
use a non-adaptive construction as e.g. described in Chapter 4, or he could try to make
use of the extra knowledge to do even better.

While some results in the past already showed [BPS01, FT99, FT01, LOD12, Roe11,
SNW03,Tas05] that it was possible to design more efficient adaptive schemes (perform-
ing significantly better than their non-adaptive counterparts), it was only in 2013 when
Laarhoven–Doumen–Roelse–Škorić–De Weger [LDR+13] showed that significant gains
can also be obtained in the bias-based framework. In particular, in [LDR+13] it was
shown that in the adaptive setting, where code words are sent out symbol by symbol and
the distributor is allowed to base future decisions on previous pirate output, all colluders
can provably be found with a code length ` ∝ c2 logn, using a dynamic version of Tardos’
scheme. This is in contrast with non-adaptive schemes, where it can never be guaranteed
that more than one pirate is caught (due to the so-called scapegoat attack, where one
pirate sacrifices himself and always outputs his content, leaving the other colluders un-
harmed).

Although various of the insights obtained for the non-adaptive setting directly carry
over to the adaptive setting, such as the possible use of the log-likelihood scores of Chap-
ter 4 in the ‘dynamic Tardos scheme’, several questions remain with respect to the adaptive
setting. For instance:

• Is the “dynamic Tardos scheme” proposed in [LDR+13,Laa13a] optimal?
• What motivates the design of this construction?

Answering these and related questions may ultimately lead to the same level of under-
standing for the adaptive case as for the non-adaptive setting, which may allow practi-
tioners to make well-motivated design choices in the adaptive setting as well.

Results. In this chapter we answer the second question by showing a connection be-
tween the ideas behind the dynamic Tardos scheme and what is known in the literature as

?This chapter is based on results from [LDR+13,Laa13a,Laa15b].

58 CHAPTER 5. SEQUENTIAL DECODING SCHEMES

the sequential probability ratio test (SPRT), invented by Wald in the 1940s [Wal47]. As a
result, we are also able to take a first step towards answering the first question: within the
class of sequential fingerprinting schemes, where the code book is not constructed adap-
tively and only accusations are done adaptively, both the dynamic Tardos scheme and
schemes built from Wald’s SPRT are asymptotically optimal for the uninformed finger-
printing game. We discuss in detail how sequential fingerprinting schemes can naturally
be constructed from Wald’s SPRT, and how various results from the corresponding SPRT
literature can be used to tune these schemes to different fingerprinting scenarios. We fur-
ther compare the dynamic Tardos scheme to Wald’s SPRT, and highlight why in general
Wald’s scheme should be preferred.

Outline. First, in Section 5.2 we review the dynamic Tardos scheme and its vari-
ants. Then, in Section 5.3 we describe Wald’s sequential probability ratio test procedure,
and how it can be applied to fingerprinting to obtain optimal sequential fingerprinting
schemes. Finally, Section 5.4 illustrates the similarities and differences between these
schemes, and concludes with an overview of both schemes.

5.2 — The sequential Tardos scheme

5.2.1 – Non-adaptive scheme. Recall that in Tardos’ original scheme [Tar08] and
many of its subsequent variants, decoding in the non-adaptive setting is done as follows.
First, for each segment i and user j, scores Sj,i = g(xj,i,yi,pi) are computed using a
score function g. Then, a user j ∈ U is accused iff Sj =

∑`
i=1 Sj,i > η for some well-

chosen threshold η. As described in Chapter 4, the following Neyman–Pearson-motivated
log-likelihood score function g is a good choice to deal with arbitrary attacks:

g(x,y,p) =

ln
(

1 + p
c(1−p)

)
if x = y = 0;

ln
(
1 − 1

c

)
if x 6= y;

ln
(

1 + 1−p
cp

)
if x = y = 1.

(5.1)

To illustrate the situation of cumulative user scores and the accusation procedure in the
non-adaptive setting, Figure 5.1a sketches the scores Sj(i0) =

∑i0
i=1 Sj,i against i0, for

i0 = 0 up to the final moment of decision i0 = `. Assuming a colluder-symmetric collusion
channel, scores of users j /∈ C follow a certain random walk with a negative drift µ0 < 0
and a relatively large variance σ2

0, while scores of guilty users j ∈ C follow a random walk
with a positive drift µ1 > 0 and a smaller variance σ2

1.

5.2.2 – Sequential scheme. The improvement described in [LDR+13] for the adap-
tive setting does not change the code generation phase at all, so although it was coined
the dynamic Tardos scheme, it may more suitably be called the sequential Tardos scheme.
The modification compared to the non-adaptive scheme described above, to make bet-
ter use of the sequential setting, is the following: instead of only cutting off users from
the content at the very end, when their scores exceed η, disconnect users as soon as
their (normalized) scores exceed the (normalized) threshold η. This prevents the col-
luder from contributing to the remaining parts of the content, and allows the distributor
to find the remaining colluders as well. Here the normalization refers to translating the
scores by +i0µ0, so that innocent users are always expected to have an average score of
E(Sj(i0)|H0) = 0.

5.2. THE SEQUENTIAL TARDOS SCHEME 59

To illustrate the effect of this change to the scheme, Figure 5.1b sketches the cu-
mulative user scores in the sequential setting without normalization, and the new accu-
sation criterion. Without normalization, the scores follow the same general path as in
Figure 5.1a, and the red accusation threshold becomes a decreasing line, rather than a
horizontal line as in [LDR+13,Laa13a]. As discussed in [LDR+13], with this modification
one can provably find all colluders with a similar provable code length as required in the
non-adaptive setting to catch at least one colluder. The central result of [LDR+13] can
be stated as follows.

Theorem 5.1. [LDR+13] Suppose ` and η are chosen in the non-adaptive Tardos scheme
to guarantee that

(i) with probability at least 1 − ε0 no innocent users are accused;
(ii) with probability at least 1 − ε1 at least one colluder is accused.

Then, using almost the same scheme parameters as before1, with this sequential construction
we can guarantee that

(i) with probability at least 1 − 2ε0 no innocent users are ever accused;
(ii) with probability at least 1 − 2ε1 all colluders are accused.

In practice, this means that to turn a non-adaptive scheme into a sequential scheme
that provably finds all colluders, we just have to replace ε0 and ε1 by 1

2ε0 and 1
2ε1 in the

formulas for ` and η of the non-adaptive setting. Since ` only depends logarithmically on
ε0 and ε1, for large n and c the resulting increase in the code length is negligible.

5.2.3 – Sequential variants. While the sequential scheme described above deals well
with the setting where c is known and users can be accused after every position i, the
paper [LDR+13] also discussed slight variations of this setting, which may occur in prac-
tice. In particular, the two problems of not being able to cut off users after every segment
i, and not knowing c, were addressed in [LDR+13, Sections IV and V].

Weakly sequential decoding. To make tracing harder, pirates may delay the pirate out-
put, so that a user whose score exceeds η at time i0 can only be disconnected at time, say,
i0+B. As we are now quite certain that he is guilty, and since he contributed to segments
i0+1, . . . , i0+B, we could consider these segments tainted and disregard them completely
for tracing the remaining colluders. This solution was proposed in [LDR+13, Section IV.A]
and it was shown to lead to a moderate increase in the code length of (c− 1)B.

Universal sequential decoding. For the setting where c is unknown and only a crude
upper bound c0 > c is known, [LDR+13, Section V] proposed a method where each user
is assigned several scores S(1)

j , . . . ,S(c0)
j based on how large the coalition is estimated to

be, and disconnecting a user as soon as one of his scores crosses one of the corresponding
boundaries η(1), . . . ,η(c0). It was noted in [LDR+13] that the scores are very similar and
the boundaries seem to correspond to a continuous function η(i0) ∝

√
i0. One of the

open problems posed in [LDR+13, Section VII.B] was therefore whether schemes with
single scores and curved boundaries are provably secure.

1This disregards a small technical detail regarding the overshoot over the boundary η; see the discussion
of Z and Z̃ in [LDR+13, Section III.C]. To be sure that the scheme still works we can disregard scores right
after a user is removed from the system [Laa13a, Section II] with a negligible increase in `. We omit details
here, and only present the simplified result.

60 CHAPTER 5. SEQUENTIAL DECODING SCHEMES

Joint decoding. Finally, another topic of interest in fingerprinting is joint decoding,
where the entire codeX (instead of only the user’s code word xj) is used to decide whether
user j should be accused. Assigning scores to tuples of users was considered before in
e.g. [ODL14], but no explicit decision criterion with provable bounds on the code length
and error probabilities were provided, and finding such a joint decoding scheme was left
as an open problem.

5.3 — The sequential Wald scheme

5.3.1 – Sequential scheme. To understand the motivation behind the sequential Tar-
dos scheme, and to see how the design can possibly be improved, we now turn our atten-
tion to what has long been known in statistics literature to be a solution for hypothesis
testing in sequential settings: Wald’s sequential probability ratio test (SPRT). This scheme
originated in the 1940s [Wal45, Wal47], and countless follow-up works have appeared
since, which have been summarized in various books on this topic [BLS13,Che72,Gov04,
JT00,MS09,Sie85,Wal47,WG86].

Let us recall the formulation of the fingerprinting problem in terms of hypothesis
testing, where we want to distinguish between the following two hypotheses:

H0 : user j is innocent (j /∈ C), (5.2)

H1 : user j is guilty (j ∈ C). (5.3)

Now, to decide between these two hypotheses in sequential settings, Wald proposed the
following procedure. Let η1 and η0 be two constants, with η1 > 0 > η0, and again let us
use the optimal log-likelihood score function g from (5.1). Now we decide in favor of H1

as soon as a user’s cumulative score exceeds η1, and we decide to accept H0 as soon as
the user’s score drops below η0. As long as a user score stays in the interval [η0,η1], we
continue testing. This accusation procedure is sketched in Figure 5.1c.

Choosing the thresholds. To understand how the parameters η0 and η1 should be cho-
sen, a connection is commonly made with the continuous-time analog of random walks,
Brownian motions. Assuming that user scores are continuous rather than discrete, so that
when a score crosses one of the boundaries it really hits the boundary (rather than jump-
ing over it, in the discrete model), then to guarantee that an innocent user is acquitted
with probability at least 1−ε ′0 and a guilty user is accused with probability at least 1−ε ′1,
the following choice is optimal:

η0 = ln
(

ε ′1
1 − ε ′0

)
, η1 = ln

(
1 − ε ′1
ε ′0

)
. (5.4)

To guarantee that all innocent users are acquitted and all guilty users are found, we need
to let ε ′0 = O(1

n
) and ε ′1 = O(1

c
), which for large c,n means η0 ∼ − ln c and η1 ∼ lnn.

For instance, writing ε ′0 = ε0/n and ε ′1 = ε1/c, so that the probability of not accusing
innocents (accusing all guilty users) is at least 1− ε0 (1− ε1), this corresponds to taking

η0 = ln
(

ε1/c

1 − ε0/n

)
, η1 = ln

(
1 − ε1/c

ε0/n

)
. (5.5)

There are two important issues that we need to address, the first of which is that we
are not dealing with continuous user scores but discrete scores. One of the effects of

5.3. THE SEQUENTIAL WALD SCHEME 61

having discrete jumps in the scores is that there may be a slight overshoot over one of
the boundaries when a user is accused or acquitted; a score may cross one of the lines at
a non-integral point so to say, and at the next measurement the score may significantly
exceed η1 or drop below η0. As a result the error probabilities for the above choice of
thresholds are not exact. A useful property of the above choice of parameters is that if
by ε̃ ′0 and ε̃ ′1 we denote the real probabilities of accusing innocent and guilty users, when
using these thresholds η0 and η1, we have [Wal45, Equation (3.30)]

ε̃ ′0 + ε̃
′
1 6 ε ′0 + ε

′
1. (5.6)

In other words, the total error probability does not increase, and at most one of ε ′0 and
ε ′1 might increase. Alternatively, exact bounds on the error probabilities can be obtained,
showing that the following slightly conservative choice of parameters guarantees that the
error bounds are satisfied:

η0 = − ln (1/ε ′1) , η1 = ln (1/ε ′0) . (5.7)

The second issue that we should address is that having a threshold η0 only makes
sense if all colluders have an increasing score. If the colluders know about the tracing
algorithm, and use an asymmetric pirate strategy, e.g. by letting one colluder be inactive
at the start and letting him join in later, this colluder will incorrectly be acquitted early
on. In this setting one could say that innocence is impossible to “prove”, as a colluder
could remain inactive and hidden for long periods of time, and it is only possible to prove
with high probability that someone is in fact guilty. To deal with this problem, a simple
solution is not to use a lower threshold η0 at all. This is equivalent to setting ε ′1 = 0, as
that way we will never say a colluder is innocent and he will always be caught. In that
case, the conservative choice of thresholds from (5.4) can be stated as

η0 = −∞, η1 = ln (1/ε ′0) = ln (n/ε0) . (5.8)

Note that in this case, the aggressive and conservative expressions from (5.4) and (5.7)
match, i.e., ε ′0 is a tight bound on the probability of incorrectly accusing a single innocent
user. This more realistic implementation of the sequential probability ratio test in the
uninformed fingerprinting game is sketched in Figure 5.1d.

Optimality of the SPRT. Although reaching a decision with this procedure may theo-
retically take a very long time, Wald proved [Wal47, Appendix A] that his test procedure
always terminates, regardless of ε0 and ε1. Furthermore, if by µ0 (µ1) and σ2

0 (σ2
1) we

denote the expected score in one segment for innocent (guilty) users, then we know
that with high probability, the procedure will terminate not long after i0 · µ0 + O(σ0)
(i0 · µ1 +O(σ1)) crosses the boundary η0 (η1).

More formally, Wald analyzed the expected time by which his procedure terminates,
under either H0 or H1, and together with Wolfowitz he proved [WW48] that his SPRT is
optimal in that it minimizes the expected time before a decision is reached, both underH0

and underH1. Ignoring overshoots over the boundary (i.e., assuming we are dealing with
continuous random walks), he further derived explicit expressions for both these expected
termination times, which are stated below. In the following theorem, as in Chapter 3 we
write d(a‖b) = a ln(a

b
) + (1 − a) ln(1−a

1−b) for the Kullback–Leibler divergence (in nats)
between a and b.

62 CHAPTER 5. SEQUENTIAL DECODING SCHEMES

Theorem 5.2. [Wal47,WW48] Suppose we have a sequential test procedure, for which
• an innocent user is accused with probability at most ε ′0;
• a guilty user is acquitted with probability at most ε ′1;
• the probability of termination is 1.

Let T denote the time at which a decision is reached. Then:

E(T |H0) >
1

−µ0
d(ε ′0‖1 − ε ′1) ≈

ln(1/ε ′1)
−µ0

, (5.9)

E(T |H1) >
1
µ1
d(ε ′1‖1 − ε ′0) ≈

ln(1/ε ′0)
µ1

. (5.10)

Furthermore, the sequential probability ratio test is a sequential test simultaneously minimiz-
ing both E(T |H0) and E(T |H1), and assuming that there is no overshoot over the boundaries,
both inequalities above are equalities for the SPRT.

For large n, the per-user false positive error probability scales as ε ′0 = Θ(1/n) while
ε ′1 = Θ(1) based on the argument that if the average pirate score exceeds η1, all pirate
scores exceed η1 [LDR+13]. We further have that

µ1 = EP
∑
x,y

fX,Y|P(x,y|p,H1) ln
fX,Y|P(x,y|p,H1)

fX,Y|P(x,y|p,H0)
= (ln 2)I(X1; Y|P), (5.11)

where I(X1, Y|P = p) is the mutual information between a pirate symbol and the pirate
output, as described in Chapter 3. This leads to the following corollary.

Theorem 5.3. For sequential tests satisfying the conditions stated in Theorem 5.2, we have:

E(T |H1) ¦
log2 n

I(X1; Y|P)
. (5.12)

This result implies that in general, sequentiality does not lead to a decrease in the
asymptotic code length; with non-adaptive schemes it is also possible to achieve this
asymptotic code length, as discussed in Chapter 4. The two gains of sequential testing are
that (i) in fact all colluders, rather than at least one of them, can provably be caught with
this asymptotic code length; and (ii) in practice, for finite c and n, the time needed to find
and trace all colluders will generally be shorter than in the non-adaptive setting. Although
the asymptotic code lengths are the same, the convergence to this limit is significantly
faster for sequential schemes than for non-adaptive schemes.

While most of the analyses and results above are based on running this scheme with
parallel infinite boundaries, it is not impossible to force an early decision. As already
described by Wald [Wal47, Section 3.8], one might ultimately prefer to truncate the test
procedure at some fixed time `, at which we make a decision similar to the sequential Tar-
dos scheme, and similar to the non-adaptive setting. This may be done with and without
a lower boundary; a sketch for the case with a lower boundary is given in Figure 5.1e.
Analyzing these variants rigorously seems difficult, even with Brownian approximations,
but an interested reader may refer to e.g. one of the books on sequential testing listed
at the beginning of this section. With truncation, one should ask the question whether
forcing a decision by some fixed time ` is really important. After all, if the main goal is
to minimize the worst-case code length ` needed to make a decision, then it is commonly
best to wait until the very end and to take all evidence into account before making any
decisions at all; which exactly corresponds to the non-adaptive setting.

5.3. THE SEQUENTIAL WALD SCHEME 63

Sj(t)

t
0

accept
H

1
accept

H
0

•(`,η)

(a) Non-adaptive decoding (cf. Chapter 4)

Sj(t)

t
0

η1 acceptH1

accept
H

0

•(`,η)

(b) The sequential Tardos scheme

Sj(t)

t
0

η1

η0

acceptH1

acceptH0

(c) Wald’s sequential probability ratio test (SPRT)

Sj(t)

t
0

η1
acceptH1

(d) Wald’s SPRT with no early innocent decisions

Sj(t)

t
0

η1

η0

acceptH1

acceptH0

•(`,η)

(e) Wald’s SPRT with truncated thresholds

Sj(t)

t
0

η2

η0

acceptH2

acceptH1

acceptH1

acceptH0

(f) Sobel and Wald’s multihypothesis SPRT

Figure 5.1: Various flavors of non-adaptive (5.1a) and sequential decoding schemes (5.1b–5.1f). The green and
red marked areas (dashed lines) indicate the range (average) of innocent and guilty user scores respectively.
Accusing a user or not is commonly based on whether a user score Sj(t) exceeds a certain threshold η or not.
Figure 5.1f further illustrates how joint decoding might work, where scores are assigned to pairs of users.

5.3.2 – Sequential variants. The SPRT has received extensive attention in the liter-
ature, with thorough analyses of the effects of the overshoot over the boundaries, slight
modifications of the scheme (such as the truncated SPRT mentioned above), and the ef-
fects of using different boundaries than the horizontal lines in the figures above. We
highlight two variants which we also considered for the sequential Tardos scheme, and
we consider how joint decoding may be done with the SPRT. For further details we refer
the interested reader to e.g. [BLS13,Che72,Gov04, JT00,MS09,Sie85,Wal47,WG86].

Weakly sequential decoding. In the setting of weakly adaptive decoding, where pirates
delay their rebroadcast of the content (or where content is sent out in blocks of size
B), the results based on continuous approximations using Brownian motions become less

64 CHAPTER 5. SEQUENTIAL DECODING SCHEMES

and less accurate. For large B, the overshoot over the boundary becomes more significant,
which was also discussed in [LDR+13, Section IV.B].

To deal with this problem, we can use the method described in [LDR+13, Section
IV.A]: ignore the tainted segments i to which a user who is now deemed guilty may
have contributed. Then the increase in the code length is at most (c− 1)B, which in the
uninformed fingerprinting game is negligible with respect to ` ∝ c2 logn.

Universal decoding. Recall that in the universal decoding setting, we assume that c
is unknown, and only a crude bound c0 � c may be known. To deal with this, the pa-
per [LDR+13] proposed to keep multiple scores per user, and multiple accusation bound-
aries. It was conjectured that using a single score for each user, and using a curved
boundary function of the form η1(i0) ∝

√
i0 may be possible.

In terms of hypothesis testing, testing whether j ∈ C or j /∈ C for unknown coalition
sizes c could be considered a test of a simple null hypothesis H0 : µ = µ0 against a
one-sided alternative H1 : µ > µ0. In the informed setting, where the collusion channel
is known, we might know exactly what µ0 is, and so such a one-sided test may form a
solution. In that case, curved stopping boundaries (in particular, having a boundary of
the shape η1(i0) ∝

√
i0) has been suggested before; see e.g. [Sie85, Chapter IV]. When

using the symmetric Tardos score function rather than the optimized log-likelihood ratios
or MAP decoders, this approach may work well, although the issue remains that it seems
that no single encoder and decoder can be used for arbitrary c and θ: in all known cases,
either the decoder depends on c or c0, or the encoder uses a cutoff which depends on c.

To work with different score functions than Tardos’ score function [Tar08] and Škorić–
Katzenbeisser–Celik’s symmetric score function [ŠKC08], where µ0 may be considered
fixed, we need to circumvent the issue that µ0 may depend on c and θ as well. In the
universal uninformed decoding setting we therefore do not even know what µ0 is. Two
hypotheses that may be more realistic to consider are H0 : µ 6 0 against H1 : µ > 0: an
innocent user will have a negative average score, while a guilty user will have a positive
average score. However, depending on the collusion strategy, the values of µ0 and µ1

may both be small or large. This does not really help the colluders, as decreasing |µ0|

and |µ1| also leads to a decrease in the variance of the scores, but it makes using a single
linear decoder problematic.

To deal with these problems, the best solution for the universal setting may be to use
a generalized linear decoder [AZ10,DHPG13,MF12], and to normalize the scores during
the decoding phase, as described in [Laa13a]. A generalized linear decoder is better
suited for the setting of unknown c, and by normalizing user scores (which can be done
based on X,p,y) we know what µ0 is. Then we can again use a hypothesis test of the
form H0 : µ = µ0 against H1 : µ > µ0, where a curved boundary may be optimal [JT00].

Joint decoding. Recall that in joint decoding the entire code X is taken into account
to decide whether users should be accused. As in [ODL14] one might assign scores to

5.4. TARDOS VS. WALD: A COMPARISON 65

tuples T of c users, and try to distinguish between the following c+ 1 hypotheses:

H0 : tuple T contains no guilty users (|T ∩ C| = 0), (5.13)

H1 : tuple T contains one guilty user (|T ∩ C| = 1), (5.14)

...

Hc : tuple T contains only guilty users (|T ∩ C| = c). (5.15)

Although not quite as well studied as the case of two hypotheses, this topic has also
received attention in SPRT literature, with the earliest work dating back to Sobel and Wald
from 1949 [SW49]. There the problem of deciding between three simple hypotheses was
considered, and a solution was given as sketched in Figure 5.1f. Using joint Neyman–
Pearson decoders to assign scores to pairs of users, several stopping boundaries may be
used, each corresponding to a decision of accepting one of the three hypotheses. The
distribution of scores then depends on whether the tuple contains 0, 1 or 2 colluders, as
illustrated by the green, yellow, and red marked areas in Figure 5.1f. This procedure
can be generalized to multiple hypotheses as well, to deal with joint decoding with c > 3
colluders. For details on how to choose these stopping boundaries ηt(i0), see e.g. [SW49].

5.4 — Tardos vs. Wald: A comparison

In the previous two sections we saw how to construct sequential schemes based on the
(sequential) Tardos scheme, and based on Wald’s SPRT. Here we briefly consider possible
applications of both schemes, and how the two schemes compare in these settings. We
consider four scenarios as follows:

1. Defending against small collusions.
2. Defending against the interleaving attack.
3. Defending against the all-1 attack.
4. Defending against arbitrary pirate attacks.

These settings are studied in the following subsections.

5.4.1 – Defending against small collusions. One of the challenges in designing an
effective traitor tracing scheme is to choose the parameter c0, the number of colluders
to defend against. Ultimately c0 should be a good estimate for the real collusion size c,
but it should also not be smaller than any collusion size c that may appear in practice;
otherwise certain collusions may be able to get away with piracy. So far none of the known
(linear) decoders work perfectly well against arbitrary collusion sizes, and so in practice
one commonly just has to choose a somewhat large parameter c0 which is certainly higher
than any practical collusion size.

To illustrate how both approaches, using the sequential Tardos scheme and Wald’s
SPRT, deal slightly differently with this inability to choose c0 exactly equal to c, we will
consider an extreme example: a scheme is designed against collusions of size c0, and in
practice the collusions consist only of single users; pirates operate almost independently,
and for simplicity we assume they also operate sequentially. This could be viewed as an
instance of the so-called scapegoat attack, where the pirate output is always the same
colluder’s output; until he is accused and he cannot contribute anymore, in which case
another colluder takes over.

66 CHAPTER 5. SEQUENTIAL DECODING SCHEMES

Tardos’ scheme. In the sequential Tardos scheme with log-likelihood scores, setting
the parameters is quite difficult. Various provable bounds on the error probabilities for
given parameters are not tight, leading to pessimistic estimates and higher thresholds and
code lengths than required. One could also estimate the actual required code length for
a given set of parameters directly, leading to better scheme parameters, but this would
have to be done for each instance separately; if any of the parameters c,n, ε0, ε1 then
changes, one would have to redo the simulations or computations to find good practical
parameters for the new setting.

To illustrate how far the provable parameters are off from reality, let us use the toy
example of c0 = c = 10, n = 1000 and ε0 = ε1 = 10−3, and let us use the provable
bounds from Theorems 4.1 and 5.1. This leads to the following parameters:

µ0 ≈ 0.00382, µ1 ≈ −0.00343, (5.16)

` ≈ 17 953, η
(`)
1 ≈ 6.9078, η

(0)
1 ≈ 68.41. (5.17)

The scheme is guaranteed to terminate within time ` ≈ 18 000, but as previously de-
scribed in [LDR+13] the scheme commonly terminates much sooner. We expect innocent
and guilty user scores to behave roughly as sketched in Figure 5.1b, and Figure 5.2a
shows that this is indeed the case.

Wald’s scheme. Using Wald’s solution, note that if we were to use a lower threshold,
colluders that only become active later on may well be acquitted early on. Instead it
should be preferred to not use a lower boundary (setting ε1 = 0 and η0 = −∞), as
previously illustrated in Figure 5.1d. A typical outcome of a simulation is illustrated in
Figure 5.2b, which shows all colluders are commonly found after t ≈ 2500 symbols.

5.4.2 – Defending against the interleaving attack. When defending against the in-
terleaving attack, which may be the most practical pirate strategy due to its simplicity
and its strength, the Neyman–Pearson decoder of (5.1) designed against the interleaving
attack [Laa14] may again be a good choice, even when the tracer’s estimate c0 is not ex-
act [FD14]. With this score function, in each segment the average pirate score increases
by µ1 ∼ 1

2c2 , while for innocent users we have µ0 ∼ −1
2c2 in case the arcsine distribution is

used, as the following lemma shows.

Lemma 5.4. Suppose that:
• the encoder uses the arcsine distribution encoder F∗P;
• the collusion channel is the interleaving attack θint;
• the decoder is the interleaving log-likelihood decoder g.

Then for large n and c, the expected score of innocent users (µ0) and guilty users (µ1) in a
single segment satisfy:

µ0 = Ex,y,p
[
g(x,y,p) | H0

]
∼ −

1
2c2 , (5.18)

µ1 = Ex,y,p
[
g(x,y,p) | H1

]
∼ +

1
2c2 . (5.19)

5.4. TARDOS VS. WALD: A COMPARISON 67

0 2000 4000 6000 8000 10 000
-60

-40

-20

0

20

40

60

80
accept H1

(a) Tardos’ scheme: Scapegoat attack

0 500 10001500 200025003000
-30

-20

-10

0

10

20
accept H1

(b) Wald’s scheme: Scapegoat attack

0 2000 4000 6000 8000 10 000
-60

-40

-20

0

20

40

60

80
accept H1

(c) Tardos’ scheme: Interleaving attack

0 1000 2000 3000 4000
-30

-20

-10

0

10

20
accept H1

(d) Wald’s scheme: Interleaving attack

0 100 200 300 400 500
-20

-10

0

10

20

30

40

(ℓ,η)

accept
H
1

accept
H
0

(e) Tardos’ scheme: All-1 attack

0 50 100 150 200 250 300
-10

-5

0

5

10

15

20

accept H1

(f) Wald’s scheme: All-1 attack

Figure 5.2: Simulations of both the sequential Tardos scheme and Wald’s SPRT using parameters c = 10,
n = 1000 and ε0 = ε1 = 10−3. The dashed lines show the average scores and the boundaries of the marked
areas are the highest and lowest scores of each group. Note that for the all-1 attack, the sequential Tardos
scheme offers no improvement over non-adaptive decoding, while Wald’s scheme does find the colluders faster.

68 CHAPTER 5. SEQUENTIAL DECODING SCHEMES

Proof. For µ0, we write out the expectation:

µ0 = Ex,y,p
[
g(x,y,p) | H0

]
(5.20)

=

∫1

0

dp

π
√
p(1 − p)

[
p2 ln

(
1 +

1 − p

cp

)
(5.21)

+ 2p(1 − p) ln
(

1 −
1
c

)
+ (1 − p)2 ln

(
1 +

p

c(1 − p)

)]
. (5.22)

Similarly, we can write out the average colluder score in a single segment to get:

µ1 =

∫1

0

dp

π
√
p(1 − p)

[
p2
(

1 +
1 − p

cp

)
ln
(

1 +
1 − p

cp

)
(5.23)

+ 2p(1 − p)

(
1 −

1
c

)
ln
(

1 −
1
c

)
(5.24)

+ (1 − p)2
(

1 +
p

c(1 − p)

)
ln
(

1 +
p

c(1 − p)

)]
. (5.25)

Combining these results, and merging the logarithms into one term, we obtain the fol-
lowing expression for µ1 − µ0:

µ1 − µ0 =

∫1

0

√
p(1 − p) dp
πc

ln
(

1 +
c

(c− 1)2p(1 − p)

)
. (5.26)

Since we know that µ1 ∼ 1
2c2 by (5.11), we need to prove that the right hand side is

asymptotically similar to 1
c2 . Rearranging terms, we need to prove that

I =

∫1

0
dp
√
p(1 − p) ln

(
1 +

c

(c− 1)2p(1 − p)

)
∼
π

c
. (5.27)

First, using ln(1 + x) < x for all x > 0, we obtain:

I <

∫1

0

c dp

(c− 1)2
√
p(1 − p)

=
πc

(c− 1)2 ∼
π

c
. (5.28)

To get a matching lower bound, we first reduce the range of integration from [0, 1] to
[δ, 1 − δ] for some δ > 0, noting that the integrand is strictly positive:

I >

∫1−δ

δ

dp
√
p(1 − p) ln

(
1 +

c

(c− 1)2p(1 − p)

)
. (5.29)

Choosing δ = 1√
c

, the term inside the logarithm is small and the following bound is tight
enough to obtain the result:

I >

∫1−δ

δ

c dp

(c− 1)2
√
p(1 − p)

− o

(
1
c

)
∼
π

c
−

4
πc

arcsin
√
δ− o

(
1
c

)
→ π

c
. (5.30)

This proves that I ∼ π
c

, hence µ0 ∼ − 1
2c2 .

5.4. TARDOS VS. WALD: A COMPARISON 69

Tardos’ scheme. An illustration of how this scheme might work in practice is given in
Figure 5.2c, where the same toy parameters as in the previous subsection are used. In
most cases the scheme finds all pirates after roughly 9000 segments.

Wald’s scheme. In Wald’s scheme, without using a lower threshold, setting ε ′0 = ε0/n,
i.e., η1 = ln(n/ε0) (and η0 = −∞) guarantees that with probability at least 1 − ε0,
no innocent users are ever accused, and with probability 1 all colluders are eventually
found. Figure 5.2d illustrates how the scheme might work, and again it takes around
3000 segments to trace the colluders.

Asymptotics. For large n and c we can derive what the parameters of both schemes
converge to. First, for Wald’s scheme, we see that the upper threshold converges to η1 ∼

lnn and the expected time until termination is ` ∼ 2c2 lnn. This corresponds to drawing
a horizontal accusation threshold starting at (0, lnn), and the pirates are expected to be
found around the point (2c2 lnn, lnn).

For the sequential Tardos scheme, we also obtain an asymptotic code length of ` ∼
2c2 lnn, and this again corresponds to the asymptotic point (2c2 lnn, lnn); see e.g. The-
orems 4.1 and 4.3. However, in the sequential Tardos scheme this accusation threshold
is a decreasing line (cf. Figure 5.1b) with a slope equal to µ0 ∼ −1

2c2 . This means that at
time i0 = 0, the accusation line starts at lnn − (2c2 lnn) · 1

2c2 = 2 lnn. In other words,
the accusation threshold starts twice as high as in Wald’s SPRT, at the point (0, 2 lnn).
So although both schemes achieve the same asymptotic code length, even in the limit of
large n and c these schemes are not quite equivalent.

Overall, in this scenario there may be several reasons to prefer Wald’s SPRT approach:
it is easier to choose good parameters, and asymptotically the accusation threshold lies
slightly lower than in the sequential Tardos scheme.

5.4.3 – Defending against the all-1 attack. Let us further highlight how the sequen-
tial Tardos scheme and Wald’s SPRT can actually behave quite differently, by showing
how both schemes deal with the all-1 attack.

As described in Chapter 4, the Neyman–Pearson approach to the all-1 attack in finger-
printing leads to an optimal decoder of the following form for a user symbol x and pirate
output y. In this case we assume p is fixed at the optimal value p ≈ ln 2

c
.

g(x,y) =

1
c

ln(2) if (x,y) = (0, 0);

ln
(
2 − 2−1/c

)
if (x,y) = (0, 1);

−∞ if (x,y) = (1, 0);

ln(2) if (x,y) = (1, 1).

(5.31)

In the non-adaptive, simple decoding setting, using this score function leads to a required
code length of ` ∼ c lnn

(ln 2)2 , while in the joint decoding setting the required code length is
asymptotically a factor ln 2 less.

Tardos’ scheme. In the sequential Tardos scheme, one would again first determine the
point (`,η) at which time a decision is taken (cf. Figure 5.1b), and then draw the ac-
cusation threshold by drawing a line towards the y-axis, with slope µ0. Note however
that with this score function, the event (x,y) = (1, 0) is impossible for a guilty user (if
a member j ∈ C has (xj)i = 1, then by definition yi = 1 as well), and so if this event

70 CHAPTER 5. SEQUENTIAL DECODING SCHEMES

occurs we know for sure that this user is innocent, and we assign the user a score of
g(1, 0) = −∞. Since the probability that this event occurs for innocent users is posi-
tive, it immediately follows that µ0 = −∞. As a consequence, the accusation threshold
starting from (`,η) with a slope of µ0 = −∞ becomes a vertical line leaving this point
in the upwards direction. This is illustrated in Figure 5.2a which again illustrates how
the scheme would work with the toy parameters used before. In this case, the provable
bounds from Theorems 4.1 and 5.1 lead to ` ≈ 459 and η(`)1 ≈ 6.91.

Wald’s scheme. In Wald’s scheme, choosing scheme parameters is done similarly as
before; we only set η1 = ln(n/ε0) ≈ 13.82 and we are ready to use the scheme. Fig-
ure 5.2b shows an example simulation of this scheme with these parameters, using the
all-1 score function from (5.31).

Overall, one can see a big difference in the time needed to find the correct set of
colluders: around 460 symbols for the Tardos-based scheme, and less than 300 symbols
for the solution based on Wald’s SPRT.

5.4.4 – Defending against arbitrary attacks. For the general, uninformed finger-
printing game, where it is not known what collusion channel was used, the tracer has
to use a decoder that works well against arbitrary collusion channels.

The decoder described in the previous subsection, designed against the interleaving
attack, can be used in the uninformed setting as well (cf. Chapter 4), and so a similar
construction as in the previous subsection may be used, both in the sequential Tardos
scheme and in Wald’s sequential scheme. As described in [Laa13a], with this score func-
tion it can only be guaranteed that (µ1 − µ0)/σ0 is sufficiently large regardless of the
collusion channel, i.e., it is possible to distinguish between the innocent and guilty dis-
tributions. However, it could be that for different collusion channels, both µ0 and µ1 are
smaller than when the interleaving attack is used. To cope with these difficulties, one
could normalize the scores: based on yi and pi, compute µ0 and σ0 for segment i, and
translate and scale the scores so that the normalized values µ0 and σ0 are the same as for
the interleaving attack.

Alternatively, one could use a wide range of different methods, such as using sev-
eral score functions simultaneously; estimating the collusion channel and using this es-
timate to choose the score function [CXFF09, FPF09a]; using a generalized linear de-
coder [AZ10,DHPG13,MF12]; or settle for slightly less and use the suboptimal but ‘uni-
versal’ symmetric score function of [ŠKC08] which works almost the same for any col-
lusion strategy. For small collusion sizes this (asymptotically suboptimal) score function
performs quite well [FD14, Figure 3], and it might make designing the scheme somewhat
easier.

5.4.5 – Discussion. Let us conclude with a brief overview of the two solutions for the
sequential fingerprinting game. For simplicity, we will compare the sequential Tardos
scheme with Wald’s scheme without a lower boundary, as that seems to be the most
convenient solution in fingerprinting. Note that although the sequential Tardos scheme
is different from Wald’s basic description of the sequential probability ratio test procedure,
it could be considered a variant of the latter; truncating the thresholds to force a decision
by a certain time ` was already considered by Wald himself, and using different shapes
for the stopping boundary has been discussed extensively in various literature on the
sequential probability ratio test.

5.4. TARDOS VS. WALD: A COMPARISON 71

Characteristic Wald Tardos

Optimal (cf. Theorem 5.2) 3 7

Asymptotically optimal 3 3

No false negatives (ε1 = 0) 3 7

Guaranteed decision at time ` 7 3

Parameters to choose η1 `,η(0)
1 ,η(`)1

Table 5.1: A quick summary of various characteristics of Wald’s SPRT and the sequential Tardos scheme. For
Wald’s scheme we assume we are not using a lower boundary η0, i.e., we set ε1 = 0 and η0 = −∞.

To compare some of the characteristics, Table 5.1 gives a quick summary of the vari-
ous characteristics of both schemes. Here optimality refers to the optimality described in
Theorem 5.2, and asymptotic optimality refers to the large n and large c � n regime.
Note that by setting ε1 = 0 in Wald’s scheme, we guarantee that eventually all colluders
are always caught. This solution of an infinite accusation boundary comes at the cost
of not knowing in advance how many segments are at most needed to reach a decision,
although in practice this does not seem to be an issue. As we saw in Section 5.4, often
choosing parameters is easier for Wald’s scheme than for the sequential Tardos scheme;
both because fewer parameters have to be chosen, and because there is a simple approx-
imate relation between the single parameter η1 and the error probability ε0, which holds
exactly if the scores behave like true Brownian motions. We further saw that for the se-
quential group testing setting, the sequential Tardos scheme offers no improvement over
non-adaptive decoding (while Wald’s scheme does).

Finally, as mentioned before, Wald’s scheme has already been studied since the 1940s,
with many papers and books appearing on the topic since [BLS13, Che72, Gov04, JT00,
MS09,Sie85,Wal47,WG86], while the sequential Tardos scheme [LDR+13] was more of
an ad hoc construction to build a scheme that also works well in adaptive settings. With
Wald’s scheme being easier to design, in many cases performing better than the sequen-
tial Tardos scheme (and with an optimal performance), and being backed by decades
of research on the topic, allowing practitioners to tweak the scheme to their needs using
various thoroughly analyzed results from the literature, it seems that in most cases Wald’s
scheme is a more suitable choice than the sequential Tardos scheme.

CHAPTER 6

Applications in group testing

6.1 — Overview

Introduction. In the last chapter of the first part we will study the consequences of
the results from the previous chapters to other, related research fields. In particular, we
will study how these results apply to the area of group testing. Very recently, results in
fingerprinting have also found useful applications in differential privacy; for more infor-
mation on those applications and the link with non-adaptive and adaptive fingerprinting
schemes, see e.g. [BUV14,DTTZ14,SU15,Ull13].

The field of group testing started with the seminal work of Dorfman [Dor43] in the
1940s, who considered the following problem. Suppose a large population of n items or
people contains a small number c of infected (or defective) items or people. To identify
this subset, it is possible to perform group tests: testing a subset of the population will lead
to a positive test result if this subset contains at least one defective item, and a negative
result otherwise. As an example, think of testing for the presence of a virus in a blood
sample, and mixing blood samples of various people; if one of them is infected, the test
of this mixed sample will come back positive, while if none of them is infected, the virus
will not appear in the mixed blood sample either. It is commonly assumed that several
subsets of blood samples to be tested/mixed are chosen in advance, and all group tests of
these mixed samples are then performed simultaneously; this is known in the literature
as non-adaptive group testing. (If the groups to be tested are chosen adaptively based
on previous test results, we arrive at what is known in the literature as adaptive group
testing.) Then, when the test results come back, the hidden subset of defective items
needs to be identified. The goal is to identify the subset of defectives using as few group
tests as possible, and with a probability of error as small as possible.

Context. It is not hard to see that the model described above (which we will refer to
as the classical group testing model) is equivalent to defending against the all-1 attack
in fingerprinting: if at least one defective (colluder) is included in the tested pool (z >
0), the test result will be positive (y = 1, so θz = 1); while if none of the defectives
(colluders) are included in the group test (z = 0), the test result is negative (y = 0, so
θ0 = 0). This connection between fingerprinting and group testing was previously made
in e.g. [CHS10,KHN+08,MF11a,SvTW00,TWWL03].

Several variants of the classical group testing model have been considered in group
testing literature as well, such as noisy group testing, where θ0 ≈ 0 and θz ≈ 1 for

?This chapter is based on results from [Laa13b,Laa14,Laa15a,Laa15b].

74 CHAPTER 6. APPLICATIONS IN GROUP TESTING

Model Simple capacities Joint capacities

θall1: classical model (ln 2)/c≈ 0.69/c (1)/c≈ 1.00/c
θadd: additive noise model (ln 2 − r)/c≈ 0.69/c (1 − 1

2h(r))/c≈ 1.00/c
θdil: dilution noise model (ln 2 −O(r ln r))/c≈ 0.69/c (1 − 1

2h(r) ln 2)/c≈ 1.00/c

θ
(u)
thr : threshold (no gap) between 0.46/c and 0.69/c (1)/c≈ 1.00/c

θ
(l,u)
int : threshold (int. gap) between 0.72/c2 and 0.69/c between 0.84/c2 and 1.00/c

θ
(l,u)
coin : threshold (coin. gap) between 0.17/c and 0.69/c between 0.32/c and 1.00/c

Table 6.1: An overview of the capacity results for various group testing models.

z > 0 [AS12,CCJS11,CHKV09,CHKV11,Hwa76,SJ10,SJ10]; and threshold group testing,
where θz = 0 for z 6 l and θz = 1 for z > u for given thresholds 0 6 l < u 6
c [ADL11a, ADL11b, ADL13, CCB+13, Che13, Dam06, Leb10]. Analyses of these models
have been presented throughout the literature, but no general framework was ever used
to analyze all these slightly different models all at once; most papers instead used ad hoc
approaches for the specific models under consideration.

Results. Applying results and techniques from Chapters 3–5 to the field of group test-
ing, we obtain several sharper results than those previously known in the group testing
literature. We improve upon various previous results on the joint group testing capaci-
ties, and derive explicit asymptotics for the simple capacities of various models. For in-
stance, we show that existing simple group testing algorithms of Chan–Jaggi–Saligrama–
Agnihotri [CJSA14] are suboptimal, and that simple decoders cannot asymptotically be
as efficient as joint decoders. In noisy models with noise parameter r, we further show
that ` ∼ c log2n

1−O(r) group tests suffice for joint decoding. More precise results, as well as
an overview of all capacity results in this chapter related to group testing, can be found
in Table 6.1. As a consequence, previous results in this area of [AS12,CHKV11] are also
suboptimal. We further provide explicit (adaptive and non-adaptive) decoding schemes
to deal with each of these models efficiently.

Outline. The outline of this chapter is as follows. In Section 6.2 we describe how the
information-theoretic approach of computing code rates and channel capacities carries
over to the area of group testing, and what results we obtain as a consequence. Sec-
tions 6.3 and 6.4 then describe how the decoding schemes proposed in Chapters 3 and 4
can be applied in group testing as well, and how these results compare to previous work
in this area.

6.2 — Non-adaptive group testing capacities

We will again study the highest achievable rates of various collusion channelsθ, where
the choices of θ now correspond to group testing models that may appear in practice.

6.2.1 – Simple capacities. We will study five different models: the classical (noise-
less) model, the models with additive noise and dilution noise, and threshold group test-
ing with and without gaps. Other models where the test result yi depends only on the
tally zi =

∑
j∈C xj,i may be analyzed in a similar fashion.

6.2. NON-ADAPTIVE GROUP TESTING CAPACITIES 75

Classical model. In the classical model, the outcome of a group test is positive iff at
least one defective item was present in the tested pool. This model is equivalent to the
all-1 attack in fingerprinting, which immediately leads to the following result.

Corollary 6.1. For the classical group testing model, the simple informed capacity and the
corresponding optimal value of p are:

Cs(θall1) =
ln 2
c

+O

(
1
c2

)
≈ 0.69

c
, psall1 =

ln 2
c

+O

(
1
c2

)
≈ 0.69

c
. (6.1)

In terms of group testing algorithms, this means that any simple decoding algorithm
for c defectives and n items requires an asymptotic number of group tests ` of at least

` ∼
c log2 n

ln 2
≈ 1.44 c log2 n ≈ 2.08 c lnn, (6.2)

where the asymptotics are for n→∞ and fixed, large c. This improves upon the known
lower bound for joint decoders of ` > c log2 n for large n [Seb85], and this shows that the
algorithm of Chan–Che–Jaggi–Saligrama–Agnihotri [CCJS11,CJSA14] (which achieves a
code length of ` ∼ e lnn) is suboptimal.

Additive noise. The classical group testing model is sometimes considered to be too
optimistic from the tracing point of view, as the outcome of the group tests may not always
be accurate. One ‘noisy’ variant of the classical model that is sometimes considered in the
literature is the additive noise model [AS12,CCJS11,CHKV11,SJ10], where a test result
may even be positive (with some small probability r) if there were no defectives in the
tested group (if z = 0). This corresponds to the following channel θadd:

(θadd)z =

{
r if z = 0;

1 if z > 0.
(6.3)

For small r we do not expect the simple capacity or the optimal choice of p to change
drastically compared to the classical model, and the following analysis confirms this.

Proposition 6.2. For the additive noise model with parameter r, the simple capacity and
the maximizing value of p are:

Cs(θadd) =
ln 2
c

(
1 −

r

ln 2
+O(r2)

)
+O

(
1
c2

)
, (6.4)

psadd =
ln 2
c

(
1 +

r(2 ln 2 − 1)
2 ln 2(1 − ln 2)

+O(r2)

)
+O

(
1
c2

)
. (6.5)

Proof. Working out a, a0 and a1, and substituting them into I(p) = pd(a1‖a) + (1 −
p)d(a0‖a), we obtain

I(p) = pd(1‖1 − (1 − p)c(1 − r)) + (1 − p)d((1 − p)c−1(1 − r)‖(1 − p)c(1 − r)).
(6.6)

76 CHAPTER 6. APPLICATIONS IN GROUP TESTING

For similar reasons as for the all-1 attack, for small values of r the second term is O(1
c2)

while the first term is Θ(1
c
) and dominates the expression for large c. This means that

for small r we have

I(p) = −p log2(1 − (1 − p)c(1 − r)) +O

(
1
c2

)
. (6.7)

To find the maximum we take the derivative with respect to p and set it equal to 0 to
obtain

ln(1 − (1 − p)c(1 − r)) = −
cp

1 − p
· (1 − p)c(1 − r)

1 − (1 − p)c(1 − r)
. (6.8)

For small r, the above expression is very close to the one we had for the all-1 attack,
and again the optimal value of p is close to ln 2

c
. Writing s = (1 − p)c(1 − r), so that

p = −1
c

ln(s
1−r) +O(

1
c2) and 1 − p = 1 −O(1

c
), the above expression reduces to

ln(1 − s) = ln
(

s

1 − r

)
· s

1 − s
+O

(
1
c

)
. (6.9)

For small r, this means that s ≈ 1
2 , so suppose s = 1

2 (1 + ε). Filling this in in the above
equation, Tayloring around ε = 0, and disregarding terms of the order ε2, r2, εr, we get

− ln 2 − ε = (− ln 2 + r+ ε)(1 + 2ε). (6.10)

Rearranging the terms, this leads to

ε = −
r

2(1 − ln 2)
+O(r2). (6.11)

Substituting ε into s and solving for p, we get

p = −
1
c

ln

(
1
2
·

1 − r
2(1−ln 2)

1 − r

)
+O

(
1
c2

)
(6.12)

=
ln 2
c

+
r

c
· 2 ln 2 − 1

2 − 2 ln 2
+O

(
r2

c
+

1
c2

)
, (6.13)

and for the capacity we get

I(p) = −
p

ln 2
ln(1 − s) (6.14)

=

[
−

1
c
+

r

c ln 2
· 2 ln 2 − 1

2 − 2 ln 2

] [
− ln 2 +

r

c
· 1

2 − 2 ln 2

]
(6.15)

=
ln 2
c

(
1 −

r

ln 2
+O(r2)

)
+O

(
1
c2

)
. (6.16)

These are indeed the given expressions for Cs(θadd) and psadd.

For small values of r, the optimal choice for p is to take p slightly smaller than ln 2
c

,
and the capacity will be slightly lower than in the classical model due to the noise on the
channel.

6.2. NON-ADAPTIVE GROUP TESTING CAPACITIES 77

Dilution noise. Another commonly considered noisy group testing model is the di-
lution noise model [AS12, CHKV09, CHKV11, Hwa76, SJ10], where the probability of a
positive test outcome depends on the number of defectives in the tested pool. More pre-
cisely, θdil is defined as follows:

(θdil)z =

{
0 if z = 0;

1 − rz if z > 0.
(6.17)

Again, for small r this model is similar to the traditional group testing model, so both the
capacity and the optimal value of p are close to the values of Proposition 3.3.

Proposition 6.3. For the dilution noise model with parameter r, the simple capacity and
the corresponding optimal value of p are:

Cs(θdil) =
ln 2
c

(
1 +

r ln r
2 ln 2

−
r(1 − ln 2)

2 ln 2
+O(r2 ln r)

)
+O

(
1
c2

)
(6.18)

psdil =
ln 2
c

(
1 +

r ln r
4 ln 2

+
r(−3(ln 2)2 + 5 ln 2 − 1)

4 ln 2(1 − ln 2)
+O(r2 ln r)

)
+O

(
1
c2

)
.

(6.19)

Proof. For a, a0 and a1 we get

a = 1 − (1 − p+ pr)c, (6.20)

a0 = 1 − (1 − p+ pr)c−1, (6.21)

a1 = 1 − r(1 − p+ pr)c−1, (6.22)

so letting s = (1 − p+ pr)c, the mutual information satisfies

I(p) = pd

(
rs

1 − p+ pr
‖s
)
+ (1 − p)d

(
s

1 − p+ pr
‖s
)

. (6.23)

For small r, the second term is again small. Expanding the first term, noting that p =
Θ(1
c
), we obtain:

I(p) =
p

ln 2

(
rs ln r+ (1 − rs) ln

(
1 − rs

1 − s

))
. (6.24)

Writing p = ln 2
c
(1+ε), we can perform a Taylor series expansion of s and rs (disregarding

terms of the order r2, rε2, ε3, 1
c

) to obtain

s =
1
2

(
1 − ε ln 2 + r ln 2 + εr ln 2(1 − ln 2) +

ε2

2
(ln 2)2

)
. (6.25)

This means that up to small order terms, we have rs = 1
2 (r − εr ln 2). Substituting this

into the expression for I(p), we eventually get

I(p) =
ln 2
c

(
1 + r

(
ln r− 1 + ln 2

2 ln 2

)
+ ε2 (ln 2 − 1) (6.26)

+ εr

(
ln r(1 − ln 2) − 3(ln 2)2 + 5 ln 2 − 1

2 ln 2

))
. (6.27)

78 CHAPTER 6. APPLICATIONS IN GROUP TESTING

This immediately leads to the given expression for the capacity by disregarding small
terms, while differentiating with respect to ε and setting equal to 0 leads to

ε =

(
ln r(1 − ln 2) − 1 + 5 ln 2 − 3(ln 2)2

4 ln 2(1 − ln 2)

)
r+O(r2). (6.28)

This leads to the given expression for p.

Threshold without gaps. Besides accounting for possible mistakes in the test results
(noisy group testing), group testing models have also been considered to account for
sensitivity in detecting positive, defective items. In threshold group testing [ADL11a,
ADL11b,ADL13,CCB+13,Che13,Dam06,Leb10], it is assumed that if the number of de-
fectives z in the tested pool is at most some constant l > 0 then the test comes back
negative, and if z is at least u > l the test result is always positive. For the case u = l+1,
which we will refer to as threshold group testing without a gap (where g = u − l − 1 is
the gap size), this completely determines the model:

(θ
(u)
thr)z =

{
0 if z < u;

1 if z > u.
(6.29)

Although simple to state, even for small u and c finding the simple capacity and optimal
choice of p analytically seems very hard, if not impossible. We can intuitively see how
the capacity will roughly behave though, since we know that:

• The case u = 1 corresponds to θ(u)
thr = θall1, for which we know that asymptotically

p = ln 2
c

and I(p) ≈ ln 2
c
≈ 1.44

c
are optimal.

• The case of odd c and u = c+1
2 corresponds to θ(u)

thr = θmaj, for which p = 1
2 and

I(p) = 1
πc ln 2 ≈

0.46
c

are known to be asymptotically optimal.
• The mutual information is symmetric around u − 1

2 = c
2 , e.g. l = 0 and u = 1

leads to the same capacity as l = c− 1 and u = c.
For values of u between 1 and c

2 , we expect the capacity to decrease as u increases, and
the optimal value p is expected to be close to u

c
.

Numerical evidence supports this intuition, as it shows that the capacity strictly de-
creases from u = 1 up to u = c+1

2 , and that the optimal values of p are almost evenly

spaced for u = 1 up to u = c
2 . The values of Cs(θ(u)

thr) for various u are shown in
Figure 6.1a, which are based on c = 25. Note that the capacity quickly drops at small
values of u, i.e., the gap between Cs(θ(1)

thr) and Cs(θ(2)
thr) is bigger than the gap between

Cs(θ
(2)
thr) and Cs(θ(13)

thr) for c = 25.

Threshold with gaps. An even harder case to deal with is threshold group testing with
g = u − l − 1 > 0, which we will refer to as threshold group testing with a gap. If
u > l + 1, then the model is not yet defined properly, as we do not know what θz is for
l + 1 6 z 6 u − 1. Different models were considered to capture the behavior of the
outcome of the test results in these gaps, such as: [CCB+13]

• The test outcome is uniformly random:

(θ
(l,u)
coin)z =

0 if z 6 l;
1
2 if l < z < u;

1 if z > u.

(6.30)

6.2. NON-ADAPTIVE GROUP TESTING CAPACITIES 79

• The probability of a positive result increases linearly with z:

(θ
(l,u)
int)z =

0 if z 6 l;
z−l
u−l if l < z < u;

1 if z > u.

(6.31)

• We simply do not know what the test outcome will be.
Note that θ(0,c)

coin = θcoin and θ(0,c)
int = θint, so these models can be seen as generalizations

of the coin-flip and interleaving attacks in fingerprinting. Also note that θ(u−1,u)
coin =

θ
(u−1,u)
int = θ

(u)
thr for all u.

Regardless of the gap model, for arbitrary l and u these models all seem hard to
study analytically. Using results obtained previously, we can however try to ‘interpolate’
the results to get somewhat decent estimates. For instance, for the first model we can
interpolate between the results for threshold group testing without a gap (Section 6.2.1)
and the coin-flip attack (Section 3.2.5) to get upper and lower bounds on the simple
capacity. For the second case, we can interpolate between threshold group testing without
a gap (Section 6.2.1) and the interleaving attack (Section 3.2.1) to estimate how the
capacity and the optimal value of p scale for arbitrary l and u.

To verify this intuition, Figures 6.1c and 6.1e show density plots of the capacities
(multiplied by c) for both the coin-flip gap model and the interleaving gap model. These
plots are based on numerics for c = 25, but already show some trends. For instance,
there are sharp peaks in the lower left and upper right corner; even when moving on
the diagonal, the capacity quickly drops when leaving the corners. The capacities further
take their maxima on and near the diagonal. In the coin-flip gap model, the capacity
quickly converges to its minimum at g = c as the gap size increases, while this takes
longer for the interleaving gap model. Finally, from Propositions 3.3, 3.4, 3.5, and 3.9,
we know exactly how the corners and center of each plot behave asymptotically, so we
have a decent idea how the capacity scales for large c and arbitrary values of l and u.
Note that the values on the diagonal correspond to Figure 6.1a.

6.2.2 – Joint capacities. As in Chapter 3 we will also consider joint code rates for the
five models considered above.

Classical model. Since the classical model is equivalent to the all-1 attack in group
testing, the following result is immediate.

Corollary 6.4. For the classical group testing model, the joint capacity and the optimal value
of p are:

Cj(θall1) =
1
c

, pjall1 =
ln 2
c

+O

(
1
c2

)
. (6.32)

This result was previously derived by Malyutov [Mal78] and Sebő [Seb85, Theo-
rem 2], who also showed that p = 1 − 2−1/c ≈ ln 2

c
is optimal.

Additive noise. The additive noise model described in Section 6.2.1 was previously
studied in the context of capacities in e.g. [AS12,CHKV11,SJ10]. Cheraghchi–Hormati–
Karbasi–Vetterli [CHKV11] showed that Cj(θadd) = O(

(1−r)3

c
), while Atia and Saligrama

80 CHAPTER 6. APPLICATIONS IN GROUP TESTING

[AS12] showed that Cj(θadd) = O(
1−r
c

). Looking closely at their proof, they show1 that

I(p) > 1−r
ec ln 2 ≈

1.88(1−r)
c

using p = 1
c

for large c.
Below we improve upon these results, by (i) providing the exact leading constant on

the capacity; (ii) showing exactly how the first order term (in r) scales for small r; and
(iii) showing how the optimal value p scales in terms of r.

Proposition 6.5. For the additive noise model, the joint capacity and the corresponding
optimal value of p are:

Cj(θadd) =
1
c

(
1 − 1

2h(r) +O(r
2)
)
+O

(
1
c2

)
, (6.33)

pjadd =
ln 2
c

(
1 −

r(1 + ln r)
2 ln 2

+O(r2)

)
+O

(
1
c2

)
. (6.34)

Proof. First, from the definition of θadd it follows that a = 1 − (1 − p)c(1 − r), h(θ0) =
h(1 − r) and h(θz) = 0 for z > 0. So the mutual information satisfies

I(p) =
1
c
[h((1 − p)c(1 − r)) − (1 − p)ch(1 − r)] . (6.35)

Writing 1 − α = (1 − p)c this can be rewritten to

I(s) =
1
c
[h((1 − α)(1 − r)) − (1 − α)h(r)] . (6.36)

One may recognize this expression as the capacity of the Z-channel [TABB02], which is
well-known to be approximately 1 − 1

2h(p), and the optimal value of α is known to be

α = 1 −
1

(1 − p)(1 + 2h(p)/(1−p))
. (6.37)

Substituting α = 1−(1−p)c and solving for p (for large c), we obtain the given asymp-
totic expressions for p and I(p).

Note that this means that any valid group testing algorithm in the additive noise model
asymptotically requires at least the following number of tests:

` >
c log2 n

1 − 1
2h(r) +O(r

2)

(
1 +O

(
1
c

))
. (6.38)

Since r = o(h(r)) for small r, this shows that the result of [AS12] is slightly off; due to
their suboptimal choice of p, they obtained a code length which scales “better” in r, but
has a higher leading constant and thus converges to the wrong limit.

1The authors of [AS12] have confirmed that the formula below [AS12, Equation (45)] contains a mistake:
there should be an extra e in the numerator of the code length T .

6.2. NON-ADAPTIVE GROUP TESTING CAPACITIES 81

Dilution noise. The dilution noise model, as described in Section 6.2.1, was previ-
ously studied in the context of lower bounds by Atia and Saligrama [AS12]. In terms of
capacities, they showed that for large c, one has Cj(θdil) = O(

(1−r)2

c
). Again, they were

not interested in leading constants, so they fixed p to the suboptimal choice p = 1
c

. We
improve upon their result by finding the leading constant explicitly, and proving how pjdil
and Cj(θdil) scale in terms of r.

Proposition 6.6. For the dilution noise model with parameter r, the joint capacity and the
corresponding maximizing value of p are:

Cj(θdil) =
1
c

(
1 −

ln 2
2
h(r) +O(r2)

)
+O

(
1
c2

)
, (6.39)

pjdil =
ln 2
c

(
1 + r−

1 − ln 2
2

h(r) +O(r2)

)
+O

(
1
c2

)
. (6.40)

Proof. For this attack, we have θz = 1 − rz. Let us first look at h(a):

h(a) = h

(
c∑
z=0

(
c

z

)
pz(1 − p)c−z(1 − rz)

)
= h(1 − (1 − p+ pr)c). (6.41)

Next, consider ah:

ah =

c∑
z=1

(
c

z

)
pz(1 − p)c−zh(1 − rz). (6.42)

For small r, the only significant contribution to the sum comes from the term with z = 1:

ah = cp(1 − p)c−1h(r) +O(r2). (6.43)

The optimal value of p is again close to ln 2
c

; in particular, the value is mostly determined
by the term h((1 − p + pr)c), which has a maximum at (1 − p + pr)c = 1

2 . Writing
(1 − p+ pr)c = 1

2 (1 + ε), we have

p =
1
c

(
ln 2 + r ln 2 − ε− rε+

ε2

2
+O(r2, ε2r, ε3)

)
, (6.44)

(1 − p)c =
1
2

(
1 − r ln 2 + ε+ rε−

ε2

2
+O(r2, ε2r, ε3)

)
. (6.45)

This means that I(p) = I(ε) satisfies (neglecting terms of the order r2, ε2r, ε3, c−1)

I(ε) ∼ 1 −
1
2
h(r) ln 2 +

1
2
εh(r)(1 − ln 2) −

ε2

2 ln 2
. (6.46)

Taking the derivative with respect to ε and setting it equal to 0, we obtain

ε =
1
2
h(r) ln 2(1 − ln 2) +O(r2). (6.47)

Substituting this value for ε in the expressions for p and I, we get the results.

82 CHAPTER 6. APPLICATIONS IN GROUP TESTING

For the resulting lower bound on the code length `, one thus obtains

` ∼
c log2 n

1 − 1
2h(r) ln 2 +O(r2)

. (6.48)

So also in the dilution noise model, the first order term in the denominator scales as h(r)
rather than r, as one might have guessed from the results of [AS12].

Threshold without gaps. For threshold group testing with u = l + 1 (as described in
Section 6.2.1) we now consider two different cases for u: u = Θ(c) and u = o(c). In
both cases, the capacity follows directly from Lemma 3.7, and we can obtain accurate
asymptotics for p in both cases. The first case is sometimes referred to in the literature
as majority group testing [ADL11a,ADL11b,ADL13].

Proposition 6.7. For the threshold group testing model with u = ` + 1, the joint capacity
is 1
c

, and the corresponding maximizing value of p is:

u = Θ(c) : pjthr[θ
(u)
thr] =

1
c
(u+ ξ) (|ξ| 6 1) (6.49)

u = o(c) : pjthr[θ
(u)
thr] =

1
c

(
u−

1
3
+O

(
1
u

))
. (6.50)

Proof. From Lemma 3.7 it follows that the capacity is 1
c

for all u, and that the optimal
value of p satisfies a = 1

2 . Writing out a, we have

a =

u−1∑
z=0

(
c

z

)
pz(1 − p)c−z =

1
2

. (6.51)

The fact that a = 1
2 roughly means that u is the median of the binomial distribution with

c trials and probability of success p. Since the median of a binomial distribution is one
of the two integers closest to cp [KB80], it follows that |u− cp| 6 1 leading to the result
for the case u = Θ(c).

For the case u = o(c), note that p = O(1
c
), so (1 − p)z = 1 −O(p) for z < u. So we

can expand a around c =∞ as:

a = (1 − p)c
u−1∑
z=0

(
c

z

)
pz +O

(
1
c

)
. (6.52)

Since the solution is in the range p = Θ(1
c
), let us write p = α

c
for some constant α. A

Taylor expansion around c =∞ of the binomial coefficients then gives us

a = e−α
u−1∑
z=0

αz

z!
+O

(
1
c

)
. (6.53)

The condition that a = 1
2 means that asymptotically, u − 1 is the median of the Pois-

son distribution with parameter λ = α. Using results about the median of the Poisson
distribution [Cho94], we obtain

α = u−
1
3
+O

(
1
u

)
. (6.54)

Substituting this back into p, we get the result.

6.3. NON-ADAPTIVE DECODING SCHEMES 83

Note that for u = 1 and c → ∞, the above approximation says p ≈ 0.67
c

, when in
reality the asymptotic optimum lies at p ∼ ln 2

c
≈ 0.69

c
, showing that already for small

values of u the term u− 1
3 is quite accurate.

Threshold with gaps. For threshold group testing with gaps, let us again consider the
two models described in Section 6.2.1: the coin-flip gap model and the interleaving gap
model. For both models, we can again interpolate between results obtained earlier in this
section to obtain estimates for Cj(θ(l,u)

coin) and Cj(θ(l,u)
int) for various l and u, and verify

our intuition numerically (see Figure 6.1). In both plots, from Proposition 6.7 it follows
that the diagonals have value c · Cj(θ) = 1, while the upper left corner in Figure 6.1d
converges to log2(5/4) ≈ 0.32 (Proposition 3.9) and the upper left corner of Figure 6.1f
scales as c−1 and converges to 0 (Proposition 3.3). In the left graph, even for small gaps
we see that the capacity quickly decreases and approaches the coin-flip capacity. In the
right graph, we see that the capacity decreases more gradually as the gap size increases.
These density plots are again drawn for c = 25.

6.3 — Non-adaptive decoding schemes

6.3.1 – Simple decoders. For group testing, we will consider three models: the clas-
sical (noiseless) model and the models with additive noise and dilution noise. Other
models where the probability of a positive test result only depends on the tally Z (such as
the threshold group testing models considered in the previous sections) may be analyzed
in a similar fashion.

We can again expand the expressions of Theorem 4.1 around c = ∞ for the optimal
values of p from the previous section, but with the added parameter r the resulting for-
mulas are quite a mess. If we also let γ→ 0 then we can use Theorem 4.3 to obtain the
following simpler expressions for simple decoding:

`(θall1) =
c lnn
ln(2)2

[
1 +O

(
√
γ+

1
c

)]
, (6.55)

`(θadd) =
c lnn

ln(2)2 − r ln 2 +O(r2)

[
1 +O

(
√
γ+

1
c

)]
, (6.56)

`(θdil) =
c lnn

ln(2)2 −O(r ln r)

[
1 +O

(
√
γ+

1
c

)]
. (6.57)

To obtain more detailed expressions for `, one could combine Theorems 4.1 and 4.3 with
the results from the previous section. For the classical model, working out the details
regarding the score function, we obtain the following result.

Corollary 6.8. For the classical group testing model, the simple decoder for the optimal
value p = psall1 ≈

ln 2
c

is given by2

g(x,y,psall1) = g(x,y) =

+1 if (x,y) = (0, 0);

−1 +O
(

1
c

)
if (x,y) = (0, 1);

−∞ if (x,y) = (1, 0);

+c if (x,y) = (1, 1).

(6.58)

2For convenience we have scaled g by a factor (c ln 2), and so also η should be scaled by a factor (c ln 2).

84 CHAPTER 6. APPLICATIONS IN GROUP TESTING

Using this decoder in combination with the parameters η and ` of Theorem 4.1, we obtain a
simple group testing algorithm with an optimal asymptotic number of group tests of

` ∼
c lnn
ln(2)2 ≈ 2.08c lnn ≈ 1.44c log2 n. (6.59)

This asymptotically improves upon results of [CCJS11, CJSA12] which proposed an
algorithm with an asymptotic code length of ` ∼ ec lnn ≈ 2.72c lnn. This other algo-
rithm does have a guarantee of never falsely identifying a non-defective item as defective
(whereas our proposed decoder does not have this guarantee), but the price they pay
for fixing ε0 = 0 is a significantly higher asymptotic number of tests required to find the
defectives.

6.3.2 – Joint decoders. Similar to the above, for group testing models we can also use
Theorem 4.4 to obtain exact expressions for ` in terms of θ,p, c,n, ε0, ε1 with provable
error bounds. For the optimal values of p, we may use Theorem 4.6 to obtain the following
refined expressions for the required asymptotic code lengths for joint decoding:

`(θall1) = c log2 n

[
1 +O

(
√
γ+

1
c

)]
, (6.60)

`(θadd) =
c log2 n

1 − 1
2h(r) +O(r

2)

[
1 +O

(
√
γ+

1
c

)]
, (6.61)

`(θdil) =
c log2 n

1 − ln 2
2 h(r) +O(r

2)

[
1 +O

(
√
γ+

1
c

)]
. (6.62)

Note that as described in Theorem 4.5 the score function for the classical group testing
model is equivalent to simply checking whether some subset of c items matches the test
results, i.e. whether these would indeed have been the test results, had this subset been
the set of defectives. With high probability, only the correct set of defectives passes this
test.

6.4 — Sequential decoding schemes

Let us finally briefly revisit sequential decoding schemes, applied to group testing. As
described in Chapter 5, both the sequential Tardos scheme and Wald’s sequential proba-
bility ratio test procedure work well against different attacks, and the biggest difference
between the two solutions appears for the all-1 attack, which happens to be equivalent
to the classical group testing model. In that case, as we saw in Figures 5.2e and 5.2f,
the sequential Tardos scheme solution is equivalent to non-adaptive group testing (i.e.
does not offer any advantage over non-adaptive testing) while Wald’s scheme does offer
a slightly different and more effective solution. Still, both solutions require an asymptotic
number of tests equal to the number of tests required in non-adaptive group testing.

For noisy group testing models with a small amount of noise r, the situation is mostly
the same, and the sequential Tardos solution hardly offers any improvement at all over the
non-adaptive scheme; the accusation threshold will have a slope of −ω(1) (as a function
of r) rather than −∞, and so it becomes an almost-vertical line rather than a vertical line
as in Figure 5.2e. So also for noisy group testing, Wald’s SPRT should be preferred over
the sequential Tardos scheme solution.

6.4. SEQUENTIAL DECODING SCHEMES 85

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(a) Simple capacity in the gapless model

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(b) Joint capacity in the gapless model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Simple capacity in the coin-flip gap model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Joint capacity in the coin-flip gap model

0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(e) Simple capacity in the interleaving gap model

0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(f) Joint capacity in the interleaving gap model

Figure 6.1: The simple (left) and joint capacities (right) for various threshold group testing models. The corners
correspond to the all-1, all-0 and coin-flip/interleaving attack, and the centers of the graphs correspond to the
majority voting attack in fingerprinting.

CHAPTER 7

Conclusions and open problems

Conclusions

To conclude, we briefly take another look at the research questions posed in Chapter 1,
and how these questions were (partially) answered in the first part of this thesis.

Q1. Can the symmetric Tardos scheme be further improved?

In Chapter 2 we saw that the optimal distribution functions in the symmetric Tardos
scheme, previously derived in [NHWI07, NFH+09], converge to the well-known arcsine
distribution as the number of colluders increases. Together with results of e.g. [LdW14]
this implies that the asymptotic code length ` ∼ 1

2π
2c2 lnn for the Tardos scheme with

the symmetric score function of Škorić–Katzenbeisser–Celik [ŠKC08] is already optimal,
and cannot be further improved only by performing a different analysis or by using other
decoders. As this asymptotic code length is larger than the information-theoretic lower
bound ` > 2c2 lnn for large c and n, we concluded that the only way to get closer to this
bound is to use other score functions.

Q2. How difficult is fingerprinting for fixed pirate strategies?

In Chapter 3 we then revisited the results of Huang and Moulin [HM12b], and extended
their results to the setting of known pirate strategies. For various attacks commonly
considered in the literature, we showed that a code length of ` = Θ(c lnn) suffices if the
distributor knows in advance that this attack is used. Surprisingly, we also established that
for joint decoding, a tracer can also achieve a code length ` � 2c2 lnn when defending
against the interleaving attack. This contradicts previous results of Huang and Moulin
who previously analyzed both the interleaving attack and arbitrary attacks, and the source
of this contradiction was found to be an assumption of Huang and Moulin on the tracer’s
capabilities. This assumption turned out to be too restrictive: if the distributor is allowed
to use any bias distribution function, then he can defend against the interleaving attack
with a shorter code length than previously deemed possible by Huang and Moulin.

In Chapter 4 we then studied decoders for fixed pirate strategies known to the dis-
tributor, and saw that defending against known attacks is again much easier than defend-
ing against arbitrary attacks; not only are the code lengths much shorter in many cases,
the proof that the Neyman–Pearson-based simple log-likelihood decoders are capacity-
achieving for their respective attacks was straightforward. Overall, the results of Chap-
ters 3 and 4 showed that defending against known attacks is significantly easier than

88 CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS

defending against arbitrary attacks, both in designing the scheme and in the code lengths
needed to find the colluders.

Q3. Can the insight for fixed pirate strategies be used for arbitrary attacks?

In Chapters 3 and 4 we also discussed how these results affect the arbitrary-attacks set-
ting. In particular, as the interleaving attack is commonly considered the strongest pirate
strategy for large collusions, and as we saw that defending against the interleaving attack
is not easier (with a simple decoder) than defending against arbitrary attacks, we focused
on the decoder designed against the interleaving attack. For simple decoding, we saw
that this decoder is asymptotically essentially equivalent to the decoder of Oosterwijk–
Škorić–Doumen [OŠD15], implying that the log-likelihood decoder designed against the
interleaving attack is capacity-achieving for arbitrary attacks. Moreover, we argued that
with this new decoder we can eliminate the cutoffs on the bias distribution, simplifying
the practical deployment of these encoders and decoders in practice, and we expect this
log-likelihood decoder to work better in practice than the Lagrange-optimized decoder
of [OŠD15]. Overall, the proposed decoder may be considered a strong and practical new
candidate for defending against arbitrary attacks.

Q4. How much does adaptivity help in tracing collusions?

In Chapter 5 we then moved on to sequential settings, where the tracer is more powerful
as the pirate copy is detected in real-time and the tracer is allowed to disconnect users
at any point in time. Practical applications of this scenario include live broadcasts of
sports events which are directly rebroadcast online by pirates. In these weakly adaptive
settings, we saw that the “dynamic Tardos scheme” previously proposed in [LDR+13] is
actually just a variant of Wald’s celebrated sequential probability ratio test (SPRT) proce-
dure from the 1940s. Looking closely at the related literature, we saw that an immediate
consequence of this connection is that with sequential schemes it is impossible to achieve
significantly better asymptotic code lengths than in non-adaptive settings and both Wald’s
scheme and the solution from [LDR+13] are essentially optimal, but that for various rea-
sons outlined in Chapter 5, Wald’s scheme may be preferred over the solution presented
in [LDR+13].

Q5. Do results in fingerprinting have applications in different fields?

In Chapter 6 we finally saw how all the previous results apply to the area of group testing,
which almost exactly corresponds to fingerprinting where the pirate strategy is fixed as the
all-1 attack. This again highlights why exploring easier settings of known pirate strategies
(as in Chapters 3 and 4) may be a useful exercise, even if there may not be a direct
application in fingerprinting. Among others we showed that an asymptotic code length
of ` ∼ (c lnn)/(log 2)2 is both necessary and sufficient for simple decoding in group
testing, which is a factor 1/ ln 2 higher than with joint decoders, and which improves
upon results of e.g. [CJSA14]. We also showed how the code length optimally scales with
the noise parameter r in various noisy group testing scenarios, and how the non-adaptive
and sequential decoding schemes from Chapters 4 and 5 can be used in group testing as
well.

89

Open problems

By searching for answers to the above research questions, new questions also ap-
peared, and below we state the important questions that we did not answer and which
may be a topic for future work.

Q6. What is the joint fingerprinting capacity for arbitrary attacks?

Arguably the biggest open question that was raised by the work in the first part of this
thesis is: what is the joint fingerprinting capacity (for large c) for the setting of unknown
pirate strategies? This question was previously answered by Huang and Moulin [HM12b],
but in Chapter 11 we saw that one of their assumptions on the tracer’s capabilities seems
to be too restrictive; without this assumption, the tracer may actually be able to defend
against arbitrary attacks with a code length ` � 2c2 lnn (but with a code length ` >
(c2 lnn)/β with β ≈ 0.84 given in Proposition 3.8). If the pirate strategy is fixed as the
interleaving attack, then the claimed saddle-point solution of the fingerprinting game of
Huang and Moulin is not a saddle-point at all.

Related to analyzing the joint fingerprinting capacity is studying whether the proposed
distribution function has any practical merit for the tracer. If we let F0 denote the arcsine
distribution function and F1 denote the optimized joint encoder for the interleaving attack
(where p is always the same value), then clearly using F0 as the encoder allows the tracer
to do reasonably well against arbitrary attacks, while using F1 may allow the colluders
to use a different, unexpected attack, such that tracing the collusion with these extreme
values of p becomes hard or impossible. A practical alternative for the tracer may be to
use the encoder Fλ ≡ λF0 + (1 − λ)F1 with λ ∈ [0, 1], so that he can defend effectively
against both the interleaving attack and against other, weaker attacks. As for defending
against various weaker attacks we only need ` = Θ(c logn)� Θ(c2 lnn) positions with
the right choice of p, one could even mix various distribution functions F0, F1, . . . and
choose weights such that one can e.g. defend against all attacks considered in Chapter 3
with a code length of ` ∼ (c2 lnn)/β. Can one devise a pirate strategy which defeats such
an encoding strategy?

Q7. What is the best joint decoder for joint fingerprinting games?

In Chapter 4 we also discussed joint decoders, and argued that these are likely to be opti-
mal as well. However, we were not able to prove that these decoders achieve asymptotic
code lengths matching the joint capacities. Can it be proved that these joint decoders are
capacity-achieving? Or are these decoders not optimal? Should perhaps a different trac-
ing algorithm be used to decide which users to accuse, rather than fixing a threshold for
the joint scores and accusing all tuples of users above this threshold? Moreover, for the
uninformed setting we know that joint decoding may not necessarily lead to a decrease
in the asymptotic code length (the joint capacity may be equivalent to 1/(2c2 ln 2)), but
even then an important question in practice remains: how much can one gain with joint
decoders for finite values of c and n compared to simple decoders?

Q8. How much does full adaptivity help compared to sequential settings?

In Chapter 5 we discussed how sequential decoding may lead to faster tracing and allows
us to catch the whole coalition, rather than part of it. Sequential decoding however as-
sumes that the code is fixed and cannot be adjusted over time. Can fully adaptive schemes,

90 CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS

where the code is also generated on-the-fly, lead to even better schemes? A result of Fiat
and Tassa [FT99,FT01] already showed that adaptive schemes may perform much better
in certain settings, and the question remains what the impact of full adaptivity is on the
required code lengths in the bias-based fingerprinting framework. Establishing upper and
lower bounds on adaptive decoding remains an important problem in collusion-resistant
fingerprinting.

Q9. How well do the asymptotic analyses reflect practical scenarios?

Finally, although the asymptotics for large c and n conveniently lead to simplifications in
the formulas and allow us to describe how these schemes scale as both c and n increase,
in practice it is commonly hard to say exactly how these results should be interpreted.
The asymptotic formulas for the code lengths and scheme parameters commonly contain
order terms with hidden constants, and so for finite parameters it is not clear what exactly
the distributor should do to obtain the best performance. Non-asymptotic analyses and
practical, numeric investigations of these schemes for finite c and n are just as useful (if
not even more useful) as the asymptotic analyses considered in this thesis.

PART II

FINDING NEARBY VECTORS IN

LATTICE SIEVING

CHAPTER 8

Sieving for shortest vectors in lattices

8.1 — Problem description

Lattices. Given a set B = {b1, . . . ,bd} ⊂ Zd of linearly independent, integral d-
dimensional vectors, the lattice spanned by B is defined as

L(B) =

{
d∑
i=1

λibi : λ1, . . . , λd ∈ Z

}
. (8.1)

In other words, the lattice consists of all integer linear combinations of the basis vectors. A
standard example of a lattice isZd, generated by thed unit vectorsB = {e1, . . . ,ed}. Note
that a basis of a lattice is by no means unique: the lattices spanned by B = {(1, 0), (0, 1)}
and B ′ = {(8, 3), (5, 2)} are both equal to L(B) = L(B ′) = Z2. More generally, multiply-
ing a basis of a lattice by an integral unimodular matrix (with determinant ±1) always
leads to another basis of the same lattice. For more on lattices, see e.g. [LvdPdW12].

The shortest vector problem (SVP). Given a basis B of a lattice, the shortest vector
problem (SVP) asks to find a shortest non-zero vector in this lattice, i.e., find a vector
s ∈ L(B) such that ‖s‖ = λ1(L) = min0 6=v∈L(B) ‖v‖, where ‖v‖ = (

∑d
i=1 v

2
i)

1/2 denotes
the Euclidean norm1. In the example of the lattice Zd, it can easily be verified that
the shortest non-zero vectors are ±ei for i = 1, . . . ,d. Given an arbitrary basis of an
arbitrary lattice in high dimensions, finding a shortest vector is known to be NP-hard
under randomized reductions [Ajt98, Mic98]. Even for approximate SVP with constant
approximation factors α > 1 (SVPα), where one is tasked to find a lattice vector of norm
at most α · λ1(L), it is known that this problem remains NP-hard [Kho04a,Kho04b].

Lattice-based cryptography. One of the main reasons why people have studied the
hardness of finding short vectors in lattices is lattice-based cryptography [MR09, Reg06,
vdP11]. After Shor’s breakthrough work on quantum algorithms for e.g. factoring large
numbers [Sho94, Sho97], which showed that most of the currently deployed crypto-
graphic primitives can be easily broken with a large-scale quantum computer, the cryp-
tographic community realized that building new cryptographic techniques relying on a
different set of “hard problems” may be wise. Various alternatives to the number-theoretic
primitives like Diffie–Hellman [DH76] and RSA [RSA78] were proposed since, and one
of these lines of research considers basing cryptographic primitives on hard lattice prob-
lems like the shortest vector problem. After the pioneering work of Ajtai [Ajt96, AD97,

1The problem can be defined for arbitrary norms, but we will restrict our attention to the Euclidean norm.

94 CHAPTER 8. SIEVING FOR SHORTEST VECTORS IN LATTICES

Ajt98,Ajt99], the potential of lattices for cryptography was soon realized by others, which
over the years led to exotic lattice-based cryptographic primitives like fully homomor-
phic encryption [Gen09] and multilinear maps [GGH13], efficient basic primitives like
NTRU [HPS98,HHGPW10] and LWE-based schemes [LPR10,LPR13,Reg05,Reg10], and
a growing belief that lattice cryptography may be secure against quantum attacks; despite
various efforts, no one has yet found a way to solve hard lattice problems in polynomial
time with quantum algorithms. As a result, lattice cryptography is often considered one
of the main candidates for “post-quantum cryptography” [BBD09].

Computational hardness of finding short vectors. While the NP-hardness of SVP
guarantees (assuming P 6= NP) that solving the shortest vector problem is hard in high
dimensions, for practical applications one has to be more precise, as parameters have to
be chosen. Choosing large parameters may lead to a higher level of security, but may also
make encrypting or decrypting a message slower. Small parameters are preferred, but
one has to be careful that the underlying hard lattice problem remains computationally
hard. Understanding the exact computational hardness of problems like SVP is crucial
for accurately choosing parameters in practice [LP11,RS10,vdPS13]. Note that the com-
plexity of SVP is not only interesting for finding shortest vectors in moderate dimensions:
Schnorr and Euchner showed how an SVP-oracle in low dimensions can also be used as
a tool inside the lattice basis reduction algorithm BKZ [Sch87,SE94] (a generalization of
the celebrated LLL algorithm [LLL82, NV10]) to find short (rather than shortest) lattice
vectors in high dimensions. Most lattice-based cryptographic schemes are broken if a suf-
ficiently short vector is found, and the current state-of-the-art for finding short vectors in
high dimensions is using BKZ with an efficient SVP oracle inside [CN11,GNR10,vdPS13].

Algorithms for finding shortest vectors. Currently the four main methodologies for
solving SVP are enumeration [FP85,Kan83,Poh81], sieving [AKS01b,AKS01a], construct-
ing the Voronoi cell of the lattice [AEVZ02, MV10a, Vou11], and a recent method based
on discrete Gaussian sampling [ADRSD15]. Enumeration has a low space complexity, but
a time complexity superexponential in the dimension d, which is suboptimal as the other
methods all run in single exponential (2Θ(d)) time. Drawbacks of the other methods are
that their space complexities are 2Θ(d) as well, and that the hidden constants in the ex-
ponents are relatively big. Enumeration (with extreme pruning [GNR10]) is commonly
considered the most practical method for solving SVP in moderate dimensions [MW15].

Sieving algorithms. On the other hand, these newer SVP methods are less explored
than enumeration, and recent improvements in sieving have considerably narrowed the
gap with enumeration. Whereas the original work of Ajtai–Kumar–Sivakumar [AKS01b]
showed only that sieving can solve SVP in time and space 2Θ(d), it was later shown
that sieving can provably solve SVP in time 22.465d+o(d) and space 21.233d+o(d) [HPS11,
NV08, PS09]. Heuristic analyses further suggest that with sieving one can solve SVP in
time 20.415d+o(d) and space 20.208d+o(d) [MV10b,NV08], or optimizing for time, in time
20.378d+o(d) and space 20.293d+o(d) [BGJ14, WLTB11, ZPH13]. Various papers have fur-
ther studied how to speed up sieving in practice [BNvdP14,FBB+14, IKMT14,LMvdP15,
MTB14, MODB14, MS11, Sch11, Sch13], and currently the highest dimension in which
sieving was used to solve SVP is 116 for arbitrary lattices [SG15], and 128 for cyclic
(ideal) lattices [BNvdP14,IKMT14,PS15], where the additional structure in these lattices
was exploited to obtain a polynomial improvement in the time and space complexities.

8.2. THE SIEVING FRAMEWORK 95

8.2 — The sieving framework

Sieving algorithms, introduced by Ajtai–Kumar–Sivakumar [AKS01b, AKS01a], at-
tempt to solve the shortest vector problem as follows: sample a long list L = {w1, . . . ,wn}
of random lattice vectors, and consider all pairwise differences wi −wj within this list.
Note that wi,wj ∈ L implies that wi −wj ∈ L. Many of these difference vectors are
longer than bothwi andwj, but as we started by sampling a very long list of points, we
hope that we will also find some difference vectorswi−wj which are short, e.g. shorter
thanwi,wj. As finding shorter vectors means we are making progress, we will keep the
short vectors we find, and repeat the procedure of looking at difference vectors after that.
By starting with a sufficiently long initial list of lattice vectors, we hope that we will keep
making progress, finding shorter vectors as we go. Ultimately we hope to saturate the
space of short lattice vectors with our list of vectors, so that after many iterations, at least
one of the difference vectorswi −wj is a shortest non-zero lattice vector.

Within the sieving literature there are many different algorithms, and similar to e.g.
lattice basis reduction algorithms, for which provable bounds on the quality of the output
basis seem far off from the actual output quality, analyses of provable sieving algorithms
seem to be very loose. Provable bounds suggest the quality of sieving is very poor: even
with the best provable sieving algorithm of Pujol and Stehlé [PS09], showing that SVP
can provably be solved in time 22.465d+o(d) and space 21.233d+o(d), one would not be able
to solve SVP in dimensions higher than 40. Sieving algorithms seem to perform better
in practice though, and one line of research on heuristic sieving focuses on analyzing the
complexity of sieving under some heuristic assumptions. Naturally these assumptions
need to be validated in practice, but experiments suggest that these assumptions are
sound, and allow us to predict the performance of sieving more accurately than with
provable bounds. For assessing the computational hardness of solving SVP, studying these
heuristic algorithms may be more relevant than studying provable sieving methods.

8.2.1 – The Nguyễn–Vidick sieve. The first paper to investigate the complexity of lat-
tice sieving under such heuristic assumptions was the paper of Nguyễn and Vidick [NV08],
studying the following algorithm. First, we sample a list L of n lattice vectors using e.g.
Klein’s algorithm [Kle00], which roughly samples vectors from a discrete Gaussian over
the lattice with a large variance (i.e. with a relatively high probability of sampling long
vectors). The parameter n is to be chosen later. Then, we apply the sieve described in
Algorithm 8.1 to the list L to obtain a list L ′ of similar size, but with shorter lattice vectors.
After applying the sieve we set L ← L ′ and we repeat the procedure as many times as
needed to either find a shortest vector in the list, or deplete the list due to the shrinking
radius of vectors that we store in our list. In that case, we started with a list that was too
small, and we need to start over with a longer list.

As described above, the sieve that maps L to L ′ only looks at difference vectors v−w
for v,w ∈ L, and stores the short difference vectors it finds in the new list L ′. However,
instead of looking at all difference vectors, it keeps track of a list of centers C ⊂ L, which
each cover part of the space. Then, for each vector in the list, we only check the difference
vectors with these center vectors for short vectors. If a short vector is found, we keep it,
and if this vector is far away from all center vectors, we add it to the list of centers to
cover a part of the space which was not yet covered by the other centers.

To analyze their sieve algorithm and prove bounds on the time and space complexities,

96 CHAPTER 8. SIEVING FOR SHORTEST VECTORS IN LATTICES

Algorithm 8.1 The Nguyễn–Vidick sieve algorithm (sieving step)

Require: An input list L of (4/3)d/2+o(d) vectors, and a parameter R := maxv∈L ‖v‖
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ · R

1: Initialize an empty list L ′ and initialize C← {0}
2: for each v ∈ L do
3: if ∃w ∈ C : ‖v−w‖ 6 γ · R then
4: Add v−w to the list L ′ and continue the outer loop over v ∈ L
5: else
6: Add v to the centers C

Nguyễn and Vidick used (a slightly stronger version of) the following assumption.

Assumption 8.1. The angle Θ(v,w) between two list vectors v,w ∈ L follows the same
distribution as the distribution of angles Θ(v,w) between vectors v,w ∈ Sd−1 drawn at
random from the unit sphere.

Using this heuristic assumption, Nguyễn and Vidick showed that an initial list of size
n = (4/3)d/2+o(d) ≈ 20.208d+o(d) suffices to find a shortest vector for γ → 1 as d →∞ [NV08]. Since the time complexity is dominated by comparing almost every pair of
vectors in L in each sieving step (the number of centers is asymptotically equivalent to
the total number of vectors in the list), this leads to a time complexity quadratic in n.
Overall, this means that under Assumption 8.1, the Nguyễn–Vidick sieve provably solves
SVP in time Õ(n2) ≈ 20.415d+o(d) and space Õ(n) ≈ 20.208d+o(d). For validation of this
heuristic assumption, see e.g. the original paper [NV08], which reports the running times
and number of vectors used for lattices of dimensions 30–50.

8.2.2 – The GaussSieve. Two years after Nguyễn and Vidick’s heuristic sieve, Miccian-
cio and Voulgaris proposed another heuristic sieving algorithm, which seems to perform
better in practice, but for which to date no bounds are known on the time complexity. A
simplified version of this GaussSieve algorithm of Micciancio and Voulgaris is described
in Algorithm 8.2. Instead of starting with a long list, and shrinking it as we proceed, this
algorithm starts with a short list of vectors, and iteratively builds a longer and longer list
of lattice vectors, occasionally reducing the lengths of list vectors in the process, until at
some point this list L contains a shortest vector. Reductions are similar to the Nguyễn–
Vidick sieve, where differences between pairs of list vectors are considered to find shorter
vectors. New vectors to be added to the list are first taken from the stack of vectors which
have been temporarily removed from the list, while if the stack is empty we sample new
vectors from a discrete Gaussian over the lattice, using e.g. Klein’s sampler [Kle00].

In the GaussSieve, the reductions in Lines 5 and 6 follow the rule:

Reducew1 withw2 : if ‖w1 ±w2‖ < ‖w1‖ thenw1 ← w1 ±w2. (8.2)

Throughout the execution of the algorithm, the list L is always pairwise reduced w.r.t.
(8.2), i.e., ‖w1 ±w2‖ > max{‖w1‖, ‖w2‖} for all w1,w2 ∈ L. This implies that two
list vectors w1,w2 ∈ L always have an angle of at least 60◦; otherwise one of them
would have been used to reduce the other before being added to the list. Since all angles
between list vectors are always at least 60◦, the size of L is bounded by the kissing constant

8.3. SEARCHING FOR NEARBY VECTORS 97

Algorithm 8.2 The GaussSieve algorithm

1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one)
4: for eachw ∈ L do
5: Reduce v withw
6: Reducew with v
7: ifw has changed then
8: Removew from the list L
9: Addw to the stack S (unlessw = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L
14: until v is a shortest vector

in dimension d: the maximum number of vectors in Rd that can be constructed such that
any two vectors have an angle of at least 60◦. Bounds and conjectures on the kissing
constant in high dimensions lead us to believe that the size of the list L will not exceed
20.208d+o(d) [CS99]; if the GaussSieve algorithm structurally encounters longer lists of
lattice vectors, then this algorithm could be used to generate lists of vectors in Rd of
length exceeding the best known, long-standing asymptotic lower bound on the kissing
constant, which is unlikely. Experiments with the GaussSieve [MV10b] validate that the
space complexity is close to 20.208d+o(d) in moderate dimensions.

While the space complexity of the GaussSieve is well understood, there are no proven
bounds on the time complexity. One might guess that the time complexity is quadratic in
n: at any point in time, each pair of vectors w1,w2 ∈ L was compared at least once to
see if one of them could reduce the other. The algorithm further seems to display a similar
asymptotic behavior as the NV-sieve in practice [MV10b,NV08], for which the time com-
plexity is heuristically known to be quadratic in n. One might therefore conjecture that
the GaussSieve also has a time complexity Õ(n2) ≈ 20.415d+o(d), matching experiments
with the GaussSieve in high dimensions [Kle14].

8.3 — Searching for nearby vectors

Looking at both sieving algorithms, there are various ways the algorithm can be mod-
ified and potentially improved (e.g. the reductions could be done differently), but we
will focus on one particular part of these algorithms: the search for nearby vectors for
reduction. In the Nguyễn–Vidick sieve, this corresponds to the search in Line 3 for a
vector w ∈ C such that ‖v −w‖ 6 γR (which intuitively means that w is close to v),
and in the GaussSieve this corresponds to the search for vectors w ∈ L which lead to
a reduction in Lines 5 and 6. Note that e.g. in the Nguyễn–Vidick sieve we are satisfied
if we find Õ(n) difference vectors shorter than γR to add to L ′. If we could instantly
find the nearby vectors to a given vector v, we would be able to reduce the time com-
plexity to Õ(n) ≈ 20.208d+o(d). Studying faster algorithms for finding nearby vectors in
high-dimensional spaces may significantly improve the practicability of sieving.

98 CHAPTER 8. SIEVING FOR SHORTEST VECTORS IN LATTICES

8.4 — Research questions and outline

With the above previous work in mind, we can formulate various research questions
which are ultimately aimed at further reducing the asymptotic time complexity of (heuris-
tically) solving SVP with sieving. Below we present the research questions which will be
addressed in the upcoming chapters, and how they will be answered in each chapter.

Q1. Can leveled sieving be further improved?

A recent line of research on heuristic sieving [WLTB11, ZPH13] concerns leveled sieving.
These works showed how to improve the time complexity to approximately 20.378d+o(d)

using three levels of centers in the Nguyễn–Vidick sieve. The time complexity seems to
decrease as the number of levels increases, so a natural question is: what is the complexity
of four-level sieving or even higher-level sieving? This question is addressed in Chapter 9.

Q2. Can techniques from nearest-neighbor literature be used to speed up sieving?

We then turn our attention to other techniques to speed up the search procedure in siev-
ing, with the main focus being on locality-sensitive hashing (LSH). Similar to leveled
sieving, this method relies on partitioning the space into regions, and only searching for
nearby vectors within regions. We consider existing LSH methods from the literature in
Chapters 10 and 11 and analyze how these methods affect the asymptotics of sieving.

Q3. Can existing NNS techniques be improved (and applied to sieving)?

Then, following up on the previous question, we may ask: can we improve upon NNS
methods to achieve even larger speed-ups for sieving? Although one existing LSH method
is already known to be optimal within the LSH framework, the hidden constants in that
construction are known to be large, and so finding a method which has better order terms
may offer a significant improvement in practice. This is done in Chapter 12.

Q4. Can new NNS primitives be designed specifically for settings like sieving?

Whereas lower bounds on NNS and LSH are known which say that existing methods are
essentially optimal, there is an important caveat to these results; existing schemes are
only known to be optimal in sparse settings where the data set has a size n = 2o(d)

subexponential in the dimension, while in sieving we are in the dense setting of n =
2Θ(d). Can we improve upon LSH for these dense settings? Or can we perhaps step
outside the LSH framework to further improve upon the search complexity for dense
settings? This question is addressed in Chapter 13.

Q5. How do quantum algorithms affect the asymptotic complexities of sieving?

Finally, lattice cryptography is often advertised as “post-quantum cryptography,” i.e. resis-
tant against quantum attacks. This means that there are no known methods to solve e.g.
SVP in subexponential time with quantum algorithms, but it does not mean that quan-
tum algorithms may not offer substantial speed-ups to existing methods like sieving. In
Chapter 14 we describe the potential impact of quantum algorithms on sieving, and how
this affects post-quantum parameter selections for lattice cryptography.

CHAPTER 9

Limitations of leveled sieving

9.1 — Overview

Context. After Ajtai–Kumar–Sivakumar’s groundbreaking work on sieving [AKS01b],
Nguyễn and Vidick’s follow-up work on practical sieving [NV08], and Micciancio and
Voulgaris’ introduction of the even more practical GaussSieve algorithm [MV10b], sev-
eral follow-up works focused on finding further improvements to sieving that would make
sieving even faster. This included making various practical tweaks and devising optimized
(parallel) implementations, leading to polynomial speed-ups [BNvdP14,FBB+14,HPS11,
IKMT14,MTB14, MODB14,MS11, Sch11,Sch13], and two lines of research showed how
an exponential speed-up can be obtained: the overlattice approach of Becker–Gama–
Joux [BGJ14] obtained an asymptotic time complexity of 20.3774d+o(d), and the lev-
eled sieving approach of Wang–Liu–Tian–Bi [WLTB11] and later Zhang–Pan–Hu [ZPH13]
showed how to obtain a time complexity of 20.3778d+o(d) with 3-level sieving. These
methods both offered a trade-off between space and time, but the similarity seems to
end there; Becker–Gama–Joux went into a different direction than both the NV-sieve and
the GaussSieve, while the leveled sieving approach stayed close to Nguyễn and Vidick’s
original approach.

In the leveled sieving framework, one could consider the original algorithm of Nguyễn
and Vidick to be the 1-level sieve, and Wang–Liu–Tian–Bi then showed how the 2-level
sieve can offer a trade-off between space and time: using exponentially more space, the
algorithm achieves a better asymptotic time complexity for solving SVP in high dimen-
sions. The idea of using multiple levels could easily be generalized, and Zhang–Pan–Hu
later studied the 3-level sieve, analyzing the asymptotic complexities and showing that
yet again, the parameters can be tuned so that more space is used but asymptotically the
algorithm finds a shortest vector faster in high dimensions.

Higher-level sieving. A natural question to ask after discovering these results is:
what happens when even more levels of sieving are used? One can tell from the anal-
ysis in the papers [WLTB11, ZPH13] that analyzing a 4-level sieve or even higher-level
sieving will probably be tedious, but the answer may be of significant interest; in 2014
Becker–Gama–Joux set the record for the fastest heuristic SVP algorithm with the over-
lattice sieve, achieving a time complexity of 20.3774d+o(d), while the 3-level sieve was
only just behind with an asymptotic complexity of 20.3778d+o(d) using slightly less space.

?This chapter is based on some previously unpublished notes.

100 CHAPTER 9. LIMITATIONS OF LEVELED SIEVING

Could a 4-level sieve beat this record and become the fastest algorithm to date for solving
SVP?

In this chapter we take another look at the leveled sieving approach, and in particular
we revisit the (numerically) optimized parameters and complexities of 2- and 3-level
sieving. Whereas the original papers only described numerically-optimized parameters
leading to the best complexities, here we describe analytic expressions for the parameters
and complexities found by Wang–Liu–Tian–Bi [WLTB11] and Zhang–Pan–Hu [ZPH13].
Looking at the optimal parameters and complexities of the 1-, 2-, and 3-level sieves, we
further observe that a pattern seems to exist, and by extrapolating this pattern to higher
levels we conjecture what the complexities of higher-level sieving may be.

Relation with the overlattice sieve. Surprisingly, we further establish that the opti-
mized complexities of the 1-, 2-, and 3-level sieves (as well as the time/memory trade-offs
of 2- and 3-level sieving) all lie on the same time/memory trade-off curve of Becker–
Gama–Joux’s seemingly unrelated overlattice sieve algorithm. The conjectured pattern
suggests that all higher-level sieves also lie on the exact same trade-off curve, and we
therefore conjecture that the optimal time complexity of the 4-level sieve is exactly equal
to the complexity of the overlattice sieve, i.e. a time complexity of 20.3774d+o(d) and a
space complexity of 20.2925d+o(d).

While this relation with the (time/memory trade-off of the) overlattice sieve raises
several new questions, which at this point we are unable to answer, the conjectured pat-
tern also provides us with some (conjectured) answers. If this pattern is correct, then (i)
the 4-level sieve will not be faster than the sieve of Becker–Gama–Joux; and (ii) higher-
level sieving does not further improve the asymptotic time complexity. As a result, leveled
sieving seems to be limited by the same time/memory trade-off curve of overlattice siev-
ing, and to achieve a better heuristic time complexity for sieving, different methods are
needed.

Outline. The remainder of this chapter is structured as follows. In Section 9.2 we first
recall the Nguyễn–Vidick sieve, and we state the result regarding the optimized complex-
ities slightly differently for the sake of highlighting a pattern later. Sections 9.3 and 9.4
describe the 2- and 3-level sieves, and we show that the optimized parameters and com-
plexities originally found through numerical optimization can be explained analytically.
Section 9.5 discusses the conjectured pattern for higher-level sieving, and the mysterious
relation with the overlattice sieve.

9.2 — The 1-level sieve of Nguyễn and Vidick

Let us first recall the original sieve algorithm of Nguyễn and Vidick, which may also
be considered the 1-level sieve as we will see later. The algorithm is described in Al-
gorithm 9.1. Here we have slightly rephrased the sieving step in the context of leveled
sieving, where the parameter γ is now called γ1 and the list of centers C is called C1.

For this algorithm, as described in Chapter 8, the best (heuristic) asymptotic time
complexity is obtained by letting γ1 → 1 as d → ∞, leading to the following result. A
proof of this result can be found in [NV08]. Below we again state the result somewhat
differently than before; the reasons for this will become clear in the next sections.

Theorem 9.1. [NV08] The optimal parameter choice γ1 for the 1-level sieve, minimizing

9.3. THE 2-LEVEL SIEVE OF WANG–LIU–TIAN–BI 101

Algorithm 9.1 The 1-level sieve

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ1 · R

1: Initialize L ′ ← ∅ and C1 ← {0}
2: for each v ∈ L do
3: if ∃w1 ∈ C1 : ‖v−w1‖ 6 γ1 · R then
4: Add v−w1 to the list L ′

5: else
6: Add v to the list C1

the overall time complexity, is given by (γ1)→ (1). Let x =
√

4/3 ≈ 1.155 be a root of

p1(x) = x
2 − 4x2 + 4. (= −3x2 + 4) (9.1)

Then the optimal time and space complexities are x2d+o(d) and xd+o(d) respectively, i.e.,
the time and space complexities are 2ctimed+o(d) and 2cspaced+o(d) with

ctime = 2 log2(x) ≈ 0.4150, cspace = 1 log2(x) ≈ 0.2075. (9.2)

9.3 — The 2-level sieve of Wang–Liu–Tian–Bi

In 2011, Wang–Liu–Tian–Bi [WLTB11] proposed a generalization of the 1-level sieve,
where two levels of centers C1,C2 are used. The algorithm is described in Algorithm 9.2.
This algorithm has two parameters γ1,γ2 corresponding to the radii of the balls in the
two levels of centers C1 and C2, and as γ1 > 1 > γ2 is chosen larger than in the original
1-level sieve, each of the vectors in C1 will now cover a larger part of the space. This
means that the list C1 will be shorter than in the 1-level sieve, as fewer points will be
needed to cover the spherical shell of radii (γ1R,R), but also that vectors inside a ball of
radius γ1 · R around a vector w1 ∈ C1 may now be longer than before; a vector v −w1

for a nearby vectorw1 may no longer be sufficiently short to add this vector to L ′.
To overcome the problem of using a larger radius γ1 for the outer list of centers, the

algorithm uses another 1-level sieve inside each of the balls around the center vectors
w1 ∈ C1. So instead of adding v − w1 to L ′, we now look for nearby center vectors
w2 ∈ C(w1)

2 which are at distance at most γ2 · R from v, where as in the 1-level sieve
we will take γ2 ≈ 1. In other words, the outer level of centers C1 defines a partitioning
of the spherical shell as the union of balls (intersected with this spherical shell), and
within each region we perform a 1-level sieve as before with parameter γ2. This idea
of partitioning the space to reduce the search space is quite commonly used in nearest-
neighbor searching as well, and the following chapters will essentially deal with the same
technique, but where the partitions of the space are chosen slightly differently1.

For this algorithm, the following theorem shows which exact (rather than numerical)
values of γ1,γ2 lead to the best time complexity, and how the resulting time and space
complexities can be expressed analytically rather than numerically.

1In fact, the relation with locality-sensitive hashing does not quite end here, as there appear to be big simi-
larities between the leveled sieving approach discussed here and the leveled locality-sensitive hashing approach
discussed in [AINR14, Section 4]. Further exploring these similarities and differences, and potential ways to
improve either method is left as an open problem.

102 CHAPTER 9. LIMITATIONS OF LEVELED SIEVING

Algorithm 9.2 The 2-level sieve

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ2 · R

1: Initialize L ′ ← ∅ and C1 ← ∅
2: for each v ∈ L do
3: if ∃w1 ∈ C1 : ‖v−w1‖ 6 γ1 · R then
4: if ∃w2 ∈ C(w1)

2 : ‖v−w2‖ 6 γ2 · R then
5: Add v−w2 to the list L ′

6: else
7: Add v to the list C(w1)

2

8: else
9: Add v to the list C1

10: Initialize C(v)
2 ← {v}

Theorem 9.2. The optimal parameter choice (γ1,γ2) for the 2-level sieve, minimizing the
overall time complexity, is given by (γ1,γ2)→ (x, 1) where x ≈ 1.093 is a root of

p2(x) = x
6 − 4x4 + 4. (9.3)

Furthermore, the optimal time and space complexities are x3d+o(d) and x2d+o(d) respec-
tively, i.e., the time and space complexities are 2ctimed+o(d) and 2cspaced+o(d) with

ctime = 3 log2(x) ≈ 0.3836, cspace = 2 log2(x) ≈ 0.2557. (9.4)

Proof. We will rely on previous analysis and notation of Wang–Liu–Tian–Bi, and we will
assume the reader is somewhat familiar with the original paper [WLTB11]. The parame-
ters γ1,γ2 must satisfy γ2 < 1 < γ1 <

√
2 ·γ2, and omitting sub-exponential terms, there

are constants n1 = (cH1)
d and n2 = (cH2/dmin)

d describing the costs of the algorithm:
n1 = |C1| is the total number of outer centers used in the algorithm, and n2 = |C

(w1)
2 |

counts the number of inner centers in one of the lists of centers associated to a vector
w1 ∈ C1. The constants cH1 , cH2 ,dmin can be shown to be functions of γ1 and γ2 as
follows, as demonstrated in [WLTB11]:

cH1 =
1

γ1

√
1 − 1

4γ
2
1

, cH2 =
γ1

γ2

√
1 −

γ2
1

4γ2
2

, dmin = γ2

√
1 −

γ2
2c

2
H1

4
. (9.5)

The overall time and space complexities of this algorithm (ignoring sub-exponential fac-
tors) can be described as n1n2(n1 +n2) and n1n2 respectively: we need to store n1 ·n2

center vectors, and for each of these vectors we need to perform a search over C1 and
(potentially) another search over a list C(w1)

2 .
First, as previously observed in [WLTB11] we should fix γ2 → 1 as that leads to

the smallest value n2 (and n1 does not depend on γ2). For the remaining parameter
γ1, we observe that as n1 is decreasing with γ1 and n2 is increasing with γ2 at roughly
comparable rates, the optimal time complexity is obtained when n1 ' n2, i.e., n1 and n2

9.3. THE 2-LEVEL SIEVE OF WANG–LIU–TIAN–BI 103

1.0 1.1 1.2 1.3 1.4
20.00 d

20.10 d

20.20 d

20.30 d

20.40 d

20.50 d

Figure 9.1: The list sizesn1 andn2 (gray, dashed), the time complexityn1n2(n1 +n2) (blue) and the space
complexity n1n2 (red) as functions of γ1, for the optimal choice γ2 → 1.

are asymptotically equivalent up to subexponential terms. See e.g. Figure 9.1 illustrating
the complexities as a function of γ1 for γ2 → 1, with the optimum lying at γ1 ≈ 1.09.

Since the optimal time complexity lies at a point where n1(γ1,γ2) ' n2(γ1,γ2), and
we know that taking γ2 → 1 is optimal, we only need to find the value of γ1 ≈ 1.1 for
which these expressions are asymptotically equivalent. We will show that for γ1 = x
(where x is a root of p2(x)) these values are asymptotically equivalent. It can then be
easily verified that exactly one root x of p2(x) lies in the required interval (1,

√
2).

Since n1 = (cH1)
d and n2 = (cH2/dmin)

d, to show that n1 ' n2 we need to show
that cH1 = cH2/dmin, or equivalently dmin = cH2/cH1 . Note that for γ2 = 1, cH1 is equal
to 1/cH2 , so this is equivalent to showing dmin = c2

H2
. Writing out the expressions for

dmin and cH2 with (γ1,γ2) = (x, 1), this translates to the condition:

(dmin =)

√
1 −

c2
H1

4
= x2

(
1 −

x2

4

)
(= c2

H2
). (9.6)

Multiplying both sides by 4 and taking squares (both sides are positive), we obtain:

16 − 4c2
H1

= x4
(
4 − x2

)2
. (9.7)

Substituting the expression for cH1 and working out the left hand side, we obtain

(16 − 4c2
H1

=) 16 −
16

x2(4 − x2)
= x4

(
4 − x2

)2
. (9.8)

Multiplying by x2(4 − x2) and expanding the polynomials on both sides, we finally get

64x2 − 16x4 − 16 = 64x6 − 48x8 + 12x10 − x12. (9.9)

104 CHAPTER 9. LIMITATIONS OF LEVELED SIEVING

Algorithm 9.3 The 3-level sieve

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ3 · R

1: Initialize L ′ ← ∅ and C1 ← ∅
2: for each v ∈ L do
3: if ∃w1 ∈ C1 : ‖v−w1‖ 6 γ1 · R then
4: if ∃w2 ∈ C(w1)

2 : ‖v−w2‖ 6 γ2 · R then
5: if ∃w3 ∈ C(w2)

3 : ‖v−w3‖ 6 γ3 · R then
6: Add v−w3 to the list L ′

7: else
8: Add v to the list C(w2)

3

9: else
10: Add v to the list C(w1)

2

11: Initialize C(v)
3 ← {v}

12: else
13: Add v to the list C1

14: Initialize C(v)
2 ← {v}

Bringing all terms to one side, and factoring the resulting polynomial, we get

(x3 − 4x− 2)(x3 − 4x+ 2)p2(x) = 0. (9.10)

Since p2(x) = 0 by definition of x, it follows that n1 ' n2 for this choice of γ1. Note that
the other factors x3 − 4x± 2 do not have a root x ∈ [1,

√
2], i.e., the given value x is the

unique solution to n1 ' n2 in the interval [1,
√

2].
Finally, in the optimal point (γ1,γ2) = (x, 1) we have n1 ' n2 and so the total time

and space complexities are of the order n1n2(n1+n2) ' n3
1 and n1n2 ' n2

1 respectively.
Since n1 = (cH1)

d, let us take a closer look at cH1 :

cH1 =
1

x
√

1 − x2

4

=

√
4

4x2 − x4 =

√
4x2

(−x6 + 4x4 − 4) + 4
=

√
4x2

4
= x. (9.11)

So the time and space complexities are n3
1 ' x3d and n2

1 ' x2d respectively.

Note that the time exponent ctime ≈ 0.3836 described in the original paper [WLTB11]
is actually exactly equal to 3/2 times the space complexity exponent cspace ≈ 0.2557 of
the 2-level sieve. We further observe that the given time and space exponents match the
approximate solutions described in [WLTB11] found through numerical optimization.

9.4 — The 3-level sieve of Zhang–Pan–Hu

We next turn our attention to 3-level sieving, which has previously been studied by
Zhang–Pan–Hu [ZPH13]. This algorithm uses three levels of centers, three parameters
γ3 < 1 < γ2 < γ1, and is described in Algorithm 9.3. It naturally extends the 1- and
2-level sieves to a sieve using three levels of centers.

9.4. THE 3-LEVEL SIEVE OF ZHANG–PAN–HU 105

In this case we have three parameters (γ1,γ2,γ3), and after eliminating one of them
by observing that γ3 → 1 is again optimal for minimizing the asymptotic complexi-
ties, we are left with a complex two-dimensional optimization problem. To restrict the
search space, we make the following natural assumption on the optimal parameter choice
(γ1,γ2,γ3) minimizing the asymptotic time complexity:

Assumption 9.3. The optimal ratio γi+1
γi

between successive radii does not depend on i.

In other words, for the 3-level sieve this assumption implies that γ3/γ2 = γ2/γ1. We
argue that this is a natural assumption as fixing this ratio roughly means that the con-
secutive searches for nearby center vectors are equally time- and space-consuming. This
means that the costs of the searches in different levels are intuitively roughly balanced,
and so the overall time complexity is expected to be smallest under this assumption. We
cannot prove that this assumption is not too restrictive though, but without this assump-
tion we cannot prove which parameter choice is optimal for 3-level sieving. Note that the
numerically-optimized parameters found by Zhang–Pan–Hu do satisfy this assumption,
and the parameters we find with this assumption match the parameters obtained in the
original paper.

Under this assumption, note that as γ3 → 1 is again optimal, it follows that γ2 =
√
γ1

and we are left with a one-dimensional optimization problem over γ1, the solution of
which is given by the following theorem. Again, the numerical constants found by Zhang–
Pan–Hu can be expressed as (functions of) a root of a certain polynomial. In this case, the
optimized time complexity exponent is exactly a factor 4

3 higher than the corresponding
space complexity exponent.

Theorem 9.4. Under Assumption 9.3, the optimal parameter choice (γ1,γ2,γ3) for the
3-level sieve, minimizing the asymptotic time complexity, is (γ1,γ2,γ3) = (x2, x, 1) where
x ≈ 1.067 is a root of

p3(x) = x
10 − 4x6 + 4. (9.12)

Furthermore, the optimal time and space complexities are x4d+o(d) and x3d+o(d) respec-
tively, i.e., the time and space complexities are 2ctimed+o(d) and 2cspaced+o(d) with

ctime = 4 log2(x) ≈ 0.3778, cspace = 3 log2(x) ≈ 0.2833. (9.13)

Proof. We will again rely on the analysis and notation of the 3-level sieve of Zhang–Pan–
Hu [ZPH13]. The three radii γ1,γ2,γ3 must satisfy 0.88 < γ3 < 1 < γ2 < γ1 <√

2 · γ3, and ignoring sub-exponential factors, there are constants n1 = (cH1)
d, n2 =

(cH2/dmin)
d, and n3 = (dmax/rmin)

d describing the costs of the algorithm, i.e., describing
the size of a list of centers at each of the three levels. The constants cH1 , cH2 , cH3 , dmin,
dmax, rmin are given below, and can also be found in [ZPH13]2.

cH1 =
1

γ1

√
1 − 1

4γ
2
1

, cH2 =
γ1

γ3

√
1 −

γ2
1

4γ2
3

, cH3 = γ
2
2

(
1 −

γ2
2c

2
H1

4

)
, (9.14)

2The authors of [ZPH13] have confirmed that in the formula fordmax in their paper, a termγ3 was missing
in the denominator of the third term inside the square root due to a typo.

106 CHAPTER 9. LIMITATIONS OF LEVELED SIEVING

1.0 1.1 1.2 1.3 1.4
20.00 d

20.10 d

20.20 d

20.30 d

20.40 d

20.50 d

20.60 d

Figure 9.2: The list sizes n1,n2,n3 (gray, dashed), the time complexity n1n2n3(n1 + n2 + n3) (blue)
and the space complexity n1n2n3 (red) as functions of γ1, for the optimal choice γ3 → 1 and under the
assumption that γ2 =

√
γ1.

rmin = γ3

√
1 −

γ2
3

4cH3

, dmin = γ2

√
1 −

γ2
2c

2
H1

4
, (9.15)

dmax =

√√√√1 −

(
γ2

3 − γ
2
1 + 1

2γ3

)2

−

(
γ2

3 − γ
2
2 + 1

2γ2
3c

2
H2

−
(2γ2

3 − γ
2
1) (γ

2
3 − γ

2
1 + 1)

4γ4
3c

2
H2

)2

.

(9.16)

Up to subexponential factors, the overall time and space complexities of the 3-level sieve
can now be expressed as n1n2n3(n1 +n2 +n3) and n1n2n3 respectively; for each of the
n1 centers w1 ∈ C1, we have a list of roughly n2 centers w2 ∈ C(w1)

2 , and for each of
these centers we have a list of n3 centers w3 ∈ C(w2)

3 , leading to a space complexity of
n1n2n3. For the time complexity, for each vector we need to search for nearby vectors
in the three consecutive layers of centers (cost n1 + n2 + n3), and we need to perform
these searches for each of the n1n2n3 vectors in L.

First, note that again γ3 → 1 is optimal, as n1 and n2 do not depend on γ3 and n3

is decreasing with γ3. Furthermore, from Assumption 9.3 we know that γ2
2 = γ1 and

we only have to perform a one-dimensional optimization over γ1. Similar to the 2-level
sieve, one can verify that n1 is decreasing with γ1, n3 is increasing with γ1, and n2 has
a maximum for γ1 ≈ 1.154; see e.g. Figure 9.2. All three curves intersect at one value
γ1, and at this point the minimum time complexity is attained. We will show that for the
given parameter choice, n1 and n2 are asymptotically the same, leading to the best time
complexity. Proving that n3 is also the same can be done analogously.

To show that n1 and n2 are equal for the given parameters (γ1,γ2,γ3), we need
to show that cH1 = cH2/dmin, or dmin = cH2/cH1 . Note that for γ3 = 1 we have
cH2 = 1/cH1 , so this is equivalent to showing dmin = c2

H2
. Writing out these expressions

9.5. HIGH-LEVEL SIEVING 107

with (γ1,γ2,γ3) = (x2, x, 1), we obtain:

(dmin =) x

√
1 −

x2c2
H1

4
= x4

(
1 −

x4

4

)
(= c2

H2
). (9.17)

Taking squares, again noting that both sides are positive, this is equivalent to

x2
(

1 −
x2

x4(4 − x4)

)
= x8

(
1 −

x4

4

)2

. (9.18)

Simplifying this expression, getting rid of all fractions, expanding all polynomials, and
bringing all terms to one side, we finally obtain

(x5 − 4x+ 2)(x5 − 4x− 2)p3(x) = 0. (9.19)

As x is a root of p3 and lies in the interval [1, 4
√

2], this proves that indeed n1 ' n2 for the
given parameters. Note that again the other factors x5 − 4x± 2 do not have any roots in
this interval, so the given value x is the unique solution to n1 ' n2.

Finally, in the point (γ1,γ2,γ3) = (x2, x, 1) we have n1 ' n2 ' n3 and the total time
and space complexities are given by n1n2n3(n1 + n2 + n3) ' n4

1 and n1n2n3 ' n3
1.

Since n1 = (cH1)
d, we again take a closer look at cH1 :

cH1 =
1

x2
√

1 − x4

4

=

√
4

4x4 − x8 =

√
4x2

(−x10 + 4x6 − 4) + 4
=

√
4x2

4
= x. (9.20)

So the overall space complexity is n3
1 ' x3d and the time complexity is n4

1 ' x4d.

Note that not only the optimized time complexity for the 3-level sieve is attained under
Assumption 9.3: also the optimal trade-off between the time and space complexities, by
varying γ1,γ2,γ3, is obtained by taking (γ1,γ2,γ3) = (α2,α, 1) and varying α ∈ [1, 4

√
2],

as can be verified by plotting the complexities for general (γ1,γ2,γ3). Other choices
(γ1,γ2,γ3) are all worse, as they lie above and to the right of the curve sketched in
Figure 9.3. The same figure also shows that the trade-offs of 2-level and 3-level sieving
overlap for part of the curve.

9.5 — High-level sieving

The approach of introducing multiple layers of centers can easily be extended to
higher levels k > 4 as well. Extrapolating from the previous algorithms, a k-level sieve
would take as input k parameters γ1, . . . ,γk, defining the radii of balls in different levels
of centers, and the resulting algorithm would be as described in Algorithm 9.4.

As analyzing arbitrary-level sieves in a similar fashion as the 1-, 2-, and 3-level sieves
of [NV08, WLTB11, ZPH13] will lead to terribly complicated expressions and optimiza-
tions, we will not perform this analysis, and instead we will focus on how we can make
an educated guess regarding the complexities of higher-level sieving, based on the previ-
ous results. In particular, looking at the results of Theorems 9.1, 9.2, 9.4, there seems to
be a pattern in the optimized parameters and complexities of k-level sieving, which leads
us to the following conjecture.

108 CHAPTER 9. LIMITATIONS OF LEVELED SIEVING

20.20 d 20.22 d 20.24 d 20.26 d 20.28 d 20.30 d

20.36 d

20.38 d

20.40 d

20.42 d

Figure 9.3: The time/memory trade-offs for 2-level sieving with parameters (γ1,γ2) = (α, 1) forα ∈ [x,
√

2]
where x is a root of p2(x) (dashed thick curve) and for 3-level sieving with parameters (γ1,γ2,γ3) =

(α2,α, 1) for α ∈ [x, 4√2] where x is a root of p3(x) (solid thin curve).

Algorithm 9.4 The k-level sieve

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γk · R

1: Initialize L ′ ← ∅ and C1 ← {0}
2: for each v ∈ L do
3: if ∃w1 ∈ C1 : ‖v−w1‖ 6 γ1 · R then
4: if ∃w2 ∈ C(w1)

2 : ‖v−w2‖ 6 γ2 · R then
5: [...]
6: if ∃wk ∈ C(wk−1)

k : ‖v−wk‖ 6 γk · R then
7: Add v−wk to the list L ′

8: else
9: Add v to the list C(wk−1)

k

10: [...]
11: else
12: Add v to the list C(w1)

2

13: Initialize C(v)
3 ← {v}

14: else
15: Add v to the list C1

16: Initialize C(v)
2 ← {v}

9.5. HIGH-LEVEL SIEVING 109

Algorithm Parameters Polynomial Complexities Exponents
Name Variables = Values (x : p(x) = 0) Time Space ctime cspace

1-level sieve (γ1) = (1) x2 − 4x2 + 4 x2n xn 0.4150 0.2075
2-level sieve (γ1,γ2) = (x, 1) x6 − 4x4 + 4 x3n x2n 0.3836 0.2557
3-level sieve (γ1,γ2,γ3) = (x2,x, 1) x10 − 4x6 + 4 x4n x3n 0.37780 0.2833

4-level sieve (γ1, . . . ,γ4) = (x3, . . . , 1) x14 − 4x8 + 4 x5n x4n 0.37783 0.3023
5-level sieve (γ1, . . . ,γ5) = (x4, . . . , 1) x18 − 4x10 + 4 x6n x5n 0.3797 0.3164
...

Table 9.1: An overview of the optimal parameter choices (minimizing the time complexity) and the associated
complexities for k = 1, 2, 3, and how these results may extend to higher-level sieving for k = 4, 5, The
bottom part of the table is based on Conjecture 9.5.

Conjecture 9.5. For k > 4, a “sensible” parameter choice (γ1, . . . ,γk) for the k-level sieve
is (γ1, . . . ,γk) = (xk−1, . . . , x, 1) where x ∈ [1, 21/(2k−2)] is a root of

pk(x) = x
4k−2 − 4x2k + 4. (9.21)

With this choice, the time and space complexities are x(k+1)n+o(n) and xkn+o(n) respec-
tively, i.e., the time and space complexities are 2ctimen+o(n) and 2cspacen+o(n) with

ctime = (k+ 1) log2(x), cspace = k log2(x). (9.22)

Note that these polynomials indeed have a root in the given interval by Bolzano’s
theorem, as pk(1) = 1 and pk(21/(2k−2)) = 4(1 − 21/(k−1)) < 0 for all k. Assuming
this conjecture holds, and the given parameters indeed lead to the given complexities,
then for 4- and 5-level sieving we would get the parameters and complexities described
in Table 9.1.

Note that the use of the word “sensible” above (rather than “optimal”) comes from
the fact that, similar to 2- and 3-level sieving, one can always obtain a time/memory
trade-off by taking (γ1, . . . ,γk) = (αk−1, . . . , 1) with x < α < 21/(2k−2). As the curves
in Figure 9.3 are decreasing, for 2- and 3-level sieving the endpoint of the curve is also
optimal, minimizing the time complexity. For 4-level sieving however, note that the “sen-
sible” parameter choice leads to a time complexity which is slightly worse than for 3-level
sieving (with an even worse space complexity). We therefore believe that it is possible to
choose a parameter α ∈ [x, 6

√
2] where x is a root of p4(x), such that the time complexity

is less than for 3-level sieving and less than given by the sensible choice above.

Asymptotics. Let us further consider what happens in the limiting case of large k
in Conjecture 9.5. Letting y = xk, we see that the polynomial pk(y) is of the form
pk(y) = y

4−o(1) − 4y2 + 4 where o(1)→ 0 as k→∞, while the complexity exponents
satisfy cspace = y and ctime = y(1+ o(1)). For large k this means that y will start looking
more and more like a root of the following polynomial:

p∞(y) = y4 − 4y2 + 4 = (y2 − 2)2. (9.23)

This polynomial clearly has a single positive real solution at y =
√

2. For large k, this
means that the “sensible” time and space exponents are conjectured to converge to ctime =
cspace =

1
2 with (γ1, . . . ,γk) = (xk−1, . . . , x, 1) where x ≈ 21/(2k−2).

110 CHAPTER 9. LIMITATIONS OF LEVELED SIEVING

Intuitively, note that in the limiting case of large k with a fixed ratio γi+1/γi, we
will use parameters γk ≈ 1 and γ1 ≈ y =

√
2, and the radii get slightly smaller and

smaller in every of the k levels. As γ1 ≈
√

2, we first partition the spherical shell in
regions, by drawing balls of radius

√
2 − o(1) around certain outer centers C1. Note

that a ball of radius
√

2 would cover exactly half of the spherical shell, and so using a
parameter γ1 =

√
2 − o(1) means that the number of centers C1 needed will be slightly

subexponential for large k. Then, with each new layer, we reduce the radius of the balls
by a constant factor γi+1/γi = x. For large k, this factor x is very close to 1, and we
will only need subexponentially many centers in each layer for large k. The number of
centers used in each layer will thus be subexponential for large k, but as the total number
of regions is n1 · · ·nk and k also increases, we are eventually apparently left with a total
list of size 2d/2+o(d), assuming the conjecture is true. Understanding where the exponent
d/2 + o(d) comes from is left as an open problem.

As the time complexity will only be slightly larger than the space complexity, as it is
of the order n1 · · ·nk(n1 + · · · + nk), the time complexity for large k will then also be
2d/2+o(d). Interestingly, assuming the conjecture is true, for large k this implies that with
our leveled data structure, we can essentially find a vector at distance at most γk ·R < R
from a target vector v in subexponential time: the cost of a single traversal of the entire
tree of centers costs n1 + · · · + nk, and as the size of each list ni is subexponential, the
total cost for one search is 2o(d).

Relation with Becker–Gama–Joux’s overlattice sieve. Although as argued above
the “sensible” parameter choice of Conjecture 9.5 does not quite make sense for k > 4, as
the time and memory both increase, if we forget about optimality for now we can simply
plot these (conjectured) points in the space/time trade-off grid as illustrated in Figure 9.4.
Besides the conjectured high-level sieving complexities, this plot also includes the 1-, 2-,
and 3-level points minimizing the time complexity, and the overlattice sieving trade-off
curve [BGJ14, Figure 3]. Note that Becker–Gama–Joux’s time/memory trade-off was
obtained with a different algorithm which seems completely unrelated to leveled sieving.

At first sight, it appears that all (conjectured) k-level sieve points lie exactly on the
overlattice trade-off curve. The following theorem shows that indeed, these points all lie
on the given curve.

Theorem 9.6. Let x ∈ [1, 21/(2k−2)] be a root of pk(x) = x4k−2 − 4x2k + 4 and let
ctime = (k+ 1) log2(x) and cspace = k log2(x). Then this point lies on the overlattice trade-
off curve [BGJ14, Figure 3], and corresponds to choosing α = 2

xk

√
x2k − 1 and β = xk in

Becker–Gama–Joux’s algorithm.

Proof. The time complexity of Becker–Gama–Joux’s algorithm (which we will not cover
here) is given by (β2/α)d = 2d log2(β

2/α) and the space complexity is βd = 2d log2β,
where the parameters α and β must satisfy the following relation for large d:

β

√
1 −

α2

4
> 1 + o(1). (9.24)

In other words, the time and space exponents of their algorithm are ctime = log2(β
2/α)

and cspace = log2 β respectively. The optimal trade-off curve [BGJ14, Figure 3] corre-
sponds to replacing the inequality above by an equality and taking the limit of d → ∞,

9.5. HIGH-LEVEL SIEVING 111

Tim
e =

Sp
ac

e

20.20 d 20.25 d 20.30 d 20.35 d 20.40 d 20.45 d 20.50 d

20.35 d

20.40 d

20.45 d

20.50 d

Figure 9.4: The optimal k-level sieve points for k = 1, 2, 3 (small red points), the optimal complexity of the
overlattice sieve (big red point), the trade-off of the overlattice sieve [BGJ14] by varying α ∈ [1,

√
2] (red

curve), and the conjectured “sensible” k-level sieve complexities of Conjecture 9.5 for k > 4 (blue). The left
starting point corresponds to k = 1 in k-level sieving, which in the Becker–Gama–Joux curve corresponds to
α = 1 and β =

√
4/3. The limiting case k→ ∞ in leveled sieving is conjectured to correspond to the top

right corner of the graph, which in the Becker–Gama–Joux curve corresponds to α = β =
√

2. Note that the
red curve also overlaps with both trade-off curves of Figure 9.3.

so that the o(1)-term disappears. Isolating α from (9.24) (with the inequality replaced
by an equality) leads to α = 2

β

√
β2 − 1. Note that substituting β = xk indeed leads to

the given value for α. To prove that the k-level points lie on this curve, what remains is
to prove that:

(ctime(k-level)) (k+ 1) log2(x)
?
= log2(β

2/α), (ctime(overlattices)) (9.25)

(cspace(k-level)) k log2(x)
?
= log2(β). (cspace(overlattices)) (9.26)

The second equality follows immediately from the choice β = xk. For the first inequality,
we substitute the given expressions for α and β in the right hand side to obtain

log2(x
k+1)

?
= log2

(
x3k

2
√
x2k − 1

)
. (9.27)

Removing the logarithms, and taking squares, this is equivalent to

x2k+2 ?
=

x6k

4(x2k − 1)
. (9.28)

Multiplying by 4(x2k − 1)/x2k+2 and bringing all terms to one side, this is equivalent to

pk(x)
?
= 0. As x is a root of this polynomial, this is clearly true.

Limitations of leveled sieving. To come back to the initial question of whether 4-
level sieving beats the overlattice algorithm, and what the complexity would be, as ex-
plained before one can obtain a suitable trade-off between the time and memory by taking

112 CHAPTER 9. LIMITATIONS OF LEVELED SIEVING

(γ1, . . . ,γk) = (αk−1, . . . , 1) and choosingα > xwhere x is a root of pk(x). In Figure 9.3
we saw how this means we can interpolate between e.g. the complexities of 1-, 2-, and
3-level sieving. These trade-offs also lie exactly on the Becker–Gama–Joux curve, and so
we naturally conjecture that for the 4-level sieve we can obtain an arbitrary point on the
Becker–Gama–Joux trade-off curve between the optimized point for 3-level sieving and
the extreme point for 4-level sieving, and in particular we can achieve the same optimized
time complexity as Becker–Gama–Joux.

Conjecture 9.7. There exists a parameter choice (γ1,γ2,γ3,γ4) = (α3,α2,α, 1) with α ∈
(x, 21/6), where x ≈ 1.05377 is a root of p4(x), such that the 4-level sieve achieves the same
optimized complexities as Becker–Gama–Joux, and this is the best time complexity that can
be achieved with 4-level sieving. In other words, minimizing the time complexity in 4-level
sieving leads to a time complexity 2ctimed+o(d) and a space complexity 2cspaced+o(d) with

ctime =
1
2 log2(

27
16) ≈ 0.3774, cspace =

1
2 log2(

3
2) ≈ 0.2925. (9.29)

The increasing curve and the increased time and space complexities of Conjecture 9.5
also suggest that this is the best that can be achieved with leveled sieving overall.

Conjecture 9.8. With higher-level sieving it is not possible to achieve a better asymptotic
time complexity than the conjectured (cspace, ctime) ≈ (0.2925, 0.3774) of the 4-level sieve.

To conclude, the analysis in this chapter raises many new interesting questions, such
as: Why are the complexities of leveled sieving and the overlattice sieve related, even
though the algorithms seem unrelated? Why does the (conjectured) limit of k → ∞
correspond to time and space complexities of 2d/2+o(d)? How should one choose α in
Conjecture 9.7 to obtain the optimal time complexity? How does the multi-level sieving
approach discussed here relate to the multi-level approach in data-dependent locality-
sensitive hashing in [AINR14, Ngu14, Raz14]? Fortunately the conjectured pattern of
leveled sieving also leads to at least one (conjectured) answer to our initial question: it is
unlikely that higher-level sieving will lead to a better asymptotic time complexity than the
overlattice sieve of Becker–Gama–Joux, and so to obtain a better complexity it is probably
necessary to use different techniques.

CHAPTER 10

Hyperplane locality-sensitive hashing

10.1 — Overview

Context. In the previous chapter we saw that leveled sieving with multiple levels
of center vectors will probably not lead to an improved time complexity compared to
Becker–Gama–Joux’s overlattice sieve [BGJ14]. We also saw that two-level sieving could
be viewed as using a (data-dependent) space partitioning method for finding nearby vec-
tors faster, similar in spirit to nearest-neighbor search techniques like locality-sensitive
hashing (LSH). Investigating whether other (existing) methods from nearest-neighbor
searching lead to speed-ups for sieving is a natural follow-up question, and this chapter
as well as the next will address what are arguably the most practical method (this chap-
ter) and the asymptotically best method (Chapter 11) for solving the nearest neighbor
search problem in the context of sieving.

Hyperplane locality-sensitive hashing. While the idea of leveled sieving of parti-
tioning the space and only searching within these regions for nearby vectors was very
ingenious indeed, as mentioned before this idea was not quite new. Many methods were
already known for partitioning the space, in such a way that nearby vectors are more likely
to end up in the same region than distant vectors. In this chapter we will investigate the
celebrated hyperplane locality-sensitive hash method of Charikar [Cha02], where the re-
gions are defined as intersections of random half-spaces, and we will show that with this
method we can heuristically solve SVP with sieving in time and space both bounded by
20.3366d+o(d). Tuning the parameters differently, we further obtain a continuous trade-off
between the space and time complexities as illustrated in Figure 10.1. This result applies
to both the Nguyễn–Vidick sieve and the GaussSieve, while for the Nguyễn–Vidick sieve
we can further use a trick first applied in [BGJ15] to turn the trade-off into a speed-up,
leading to a time complexity of 20.3366d+o(d) and a space complexity of 20.2075d+o(d).
The complexities in this point are indicated by the leftmost blue point in Figure 10.1.

The same idea of turning the trade-off into a speed-up unfortunately does not seem
to apply to the more practical GaussSieve. To overcome the increase in the memory com-
plexity we show that with probing we can significantly limit the increase in the memory,
at only a small loss in the time complexity. Practical experiments with the GaussSieve
with hyperplane LSH (the HashSieve) validate our heuristic analyses, and show that (i)
already in low dimensions, this algorithm outperforms the most practical sieving algo-
rithm to date, the GaussSieve algorithm [MV10b]; and (ii) as expected, the increase in

?This chapter is based on results from [Laa15c,MLB15].

114 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

Tim
e =

Sp
ac

e

●●

20.20 d 20.25 d 20.30 d 20.35 d 20.40 d 20.45 d 20.50 d

20.30 d

20.35 d

20.40 d

20.45 d

20.50 d

Figure 10.1: The heuristic space-time trade-off of overlattice sieving and leveled sieving (the red points and
curve, cf. Chapter 9), and the heuristic trade-off between the space and time complexities obtained with hy-
perplane LSH (the blue curve). The dashed, black line shows the estimate for the space-time trade-off of our
algorithm obtained by assuming that all reduced vectors are orthogonal (cf. Proposition 10.3). The leftmost
blue point follows from Theorem 10.10 and only applies to the Nguyễn–Vidick sieve, and not to the GaussSieve.

the space complexity is significantly smaller than one might guess from only looking at the
leading exponent of the asymptotic space complexity of the GaussSieve-based HashSieve.

Outline. The remainder of this chapter is organized as follows. In Section 10.2 we de-
scribe the technique of locality-sensitive hashing, and in Section 10.3 we describe the spe-
cific instantiation of this general framework with Charikar’s hyperplane locality-sensitive
hash family [Cha02]. Section 10.4 describes how to apply this technique to the Nguyễn–
Vidick sieve algorithm to obtain an exponential speed-up for solving SVP. Section 10.5
describes a practical alternative by applying the same techniques to the GaussSieve, lead-
ing to the HashSieve algorithm, and describes the technique of probing. In the same sec-
tion we finally describe experiments performed with the GaussSieve and the HashSieve,
showing that the HashSieve is already faster than the GaussSieve in moderate dimensions
(i.e. the cross-over point between the GaussSieve and the HashSieve seems to lie around
dimensions 30 − 40).

10.2 — The locality-sensitive hashing (LSH) framework

10.2.1 – Locality-sensitive hash families. The near(est) neighbor problem is the fol-
lowing [IM98]: Given a list of d-dimensional vectors of cardinality n, e.g., given a list
L = {w1,w2, . . . ,wn} ⊂ Rd, preprocess L in such a way that given a target vector v /∈ L,
we can efficiently find an elementw ∈ L close(st) to v. While for low dimensions d there
exist ways to answer these queries in time sub-linear or even logarithmic in the list size n,

10.2. THE LOCALITY-SENSITIVE HASHING (LSH) FRAMEWORK 115

for high dimensions it generally seems hard to do better than with a naive brute-force list
search of timeO(n). This inability to efficiently store and query lists of high-dimensional
data is sometimes referred to as the “curse of dimensionality” [IM98].

Fortunately, if we know that the list L has a certain structure, or if there is a significant
gap between what is meant by “nearby” and “far away,” then there are ways to preprocess
L such that queries can be answered in time sub-linear in n. One of the most well-known
methods for this is locality-sensitive hashing (LSH), which relies on the use of locality-
sensitive hash functions [IM98]. These are functions h which map d-dimensional vectors
v to low-dimensional sketches h(v), such that vectors which are nearby in Rd have a
high probability of having the same sketch and vectors which are far apart have a low
probability of having the same image under h. Formalizing this property leads to the
following definition of a locality-sensitive hash family H. HereD is a similarity measure1

on Rd, and U is commonly a finite subset of N.

Definition 10.1. [IM98] A family H = {h : Rd → U} is called (r1, r2,p1,p2)-sensitive for
similarity measure D if for any v,w ∈ Rd:

• if D(v,w) < r1 then Ph∈H[h(v) = h(w)] > p1;
• if D(v,w) > r2 then Ph∈H[h(v) = h(w)] 6 p2.

Note that if there exists an LSH family H which is (r1, r2,p1,p2)-sensitive with p1 �
p2, then (without actually computing pairwise distances) we can use H to distinguish
between vectors which are at most r1 away from v, and vectors which are at least r2

away from v with non-negligible probability.

10.2.2 – Amplification. In general it is not known whether efficiently computable
(r1, r2,p1,p2)-sensitive hash families even exist for the ideal setting of r1 ≈ r2 and p1 ≈ 1
and p2 ≈ 0. Instead, one commonly first constructs an (r1, r2,p1,p2)-sensitive hash
family H with p1 ≈ p2, and then uses several AND- and OR-compositions to turn it into
an (r1, r2,p ′1,p ′2)-sensitive hash family H ′ with p ′2 < p2 < p1 < p

′
1, thereby amplifying

the gap between p1 and p2.
AND-composition. Given an (r1, r2,p1,p2)-sensitive hash family H, we can construct

an (r1, r2,pk1 ,pk2)-sensitive hash family H ′ by taking a bijective function α :
Uk → U ′ and k functions h1, . . . ,hk ∈ H and defining h ∈ H ′ as h(v) =
α(h1(v), . . . ,hk(v)). This increases the relative gap between p1 and p2 but de-
creases their absolute values.

OR-composition. Given an (r1, r2,p1,p2)-sensitive hash family H, we can construct an
(r1, r2, 1−(1−p1)

t, 1−(1−p2)
t)-sensitive hash family H ′ by taking h1, . . . ,ht ∈

H, and defining h ∈ H ′ by the relation h(v) = h(w) iff hi(v) = hi(w) for
some i ∈ {1, . . . , t}. This compensates the decrease of the absolute values of the
probabilities.

Combining a k-wise AND-composition with a t-wise OR-composition, we can turn
an (r1, r2,p1,p2)-sensitive hash family H into an (r1, r2,p∗1 ,p∗2)-sensitive hash family H ′

with p∗ = 1−(1−pk)t for p = p1,p2. Note that for p1 > p2 we can always find values k
and t such that p∗1 ≈ 1 and p∗2 ≈ 0. For ease of notation, we will write p∗ = 1−(1−pk)t

for arbitrary p,k, t.

1A similarity measureDmay informally be thought of as a “slightly relaxed” metric, which may not satisfy
all properties associated to metrics; see e.g. [IM98] for details.

116 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

10.2.3 – Finding nearest neighbors. To use these hash families to find nearest neigh-
bors, we can use the following method first described in [IM98]. First, choose t·k random
hash functions hi,j ∈ H, and use the AND-composition to combine k of them at a time
to build t different hash functions h1, . . . ,ht. Then, given the list L, build t different
hash tables T1, . . . , Tt, where for each hash table Ti we insert w into the bucket labeled
hi(w). Finally, given the target vector v, compute its t images hi(v), gather all the candi-
date vectors that collide with v in at least one of these hash tables (an OR-composition),
and search this list of candidates for the nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends on the
quality of the underlying hash family and on the parameters k and t. Larger k and t
amplify the gap between the probabilities of finding nearby and faraway vectors as can-
didates, but this comes at the cost of having to compute many hashes (both during the
preprocessing phase and in the querying phase) and having to store many hash tables,
each containing all vectors from L. The following lemma shows how to balance k and t
such that the overall query time complexity of finding near(est) neighbors is minimized.

Lemma 10.2. [IM98] Suppose there exists a (r1, r2,p1,p2)-sensitive hash family H. Let

ρ =
logp1

logp2
, k =

logn
log(1/p2)

, t = O(nρ). (10.1)

Then, for any v ∈ Rd, with high probability we can find an element w∗ ∈ L with
D(v,w∗) 6 r2 or correctly conclude that no element w∗ ∈ L with D(v,w∗) 6 r1 ex-
ists, with the following costs:

1. Time for preprocessing the list: O(n1+ρ log1/p2
n).

2. Space complexity of the preprocessed data: O(n1+ρ).
3. Time for answering a query v: O(nρ).

a) Hash evaluations of the query vector v: t = O(nρ).
b) Candidates to compare to the query vector v: O(nρ).

Remark 10.1. Although Lemma 10.2 only shows how to choose k and t to minimize the
time complexity, we can generally tune k and t to use slightly more time and less space.
In a sense this algorithm can be seen as a generalization of the naive brute-force search
method, as k = 0 and t = 1 corresponds to checking the whole list in linear time with
linear space. Note that the main costs of the algorithm are determined by the value of
ρ, which is therefore often considered the central parameter of interest in LSH literature.
The goal is to design H so that ρ is as small as possible.

10.3 — Hyperplane locality-sensitive hashing

Let us now consider an actual hash family for the similarity measure D that we are
interested in. As argued in the next section, what seems a more natural choice forD than
the Euclidean distance is the angular distance or cosine similarity, defined on Rd as

D(v,w) = θ(v,w) = arccos
(

vTw

‖v‖ · ‖w‖

)
. (10.2)

In other words, the “distance” between two vectors is given by their common angle. With
this similarity measure, two vectors are considered nearby if their common angle is small,

10.4. THE NGUYEN–VIDICK SIEVE WITH HYPERPLANE LSH 117

and far apart if their angle is large. In a sense, this is similar to the Euclidean norm: if
two vectors have similar Euclidean norms, then their distance is large if and only if their
angular distance is large. For this similarity measureD, the following hash family H was
described in [Cha02]:

H = {ha : a ∈ Rd, ‖a‖ = 1}, ha(v)
def
=

{
1 if aTv > 0;

0 if aTv < 0.
(10.3)

Intuitively, the vector a defines a hyperplane (for which a is a normal vector), and ha
maps the two half-spaces separated by this hyperplane to different bits.

To see why this is potentially a suitable locality-sensitive hash family for the angular
distance, consider two vectors v,w ∈ Rd. These two vectors lie on a two-dimensional
plane passing through the origin, and with probability 1 a random 8hash vector a does
not lie on this plane (for d > 2). This means that the hyperplane defined by a intersects
this plane in some line `. Since a is taken uniformly at random from the unit sphere, the
line ` has a uniformly random ‘direction’ in the plane, and maps v andw to different hash
values iff ` separates v and w in the plane. Therefore the probability that h(v) 6= h(w)
is directly proportional to their common angle θ(v,w) as follows [Cha02]:

Pha∈H
[
ha(v) = ha(w)

]
= 1 −

θ(v,w)

π
. (10.4)

For instance, if θ(v,w) = 0 then Pha∈H[ha(v) = ha(w)] = 1, and if θ(v,w) = π then
Pha∈H[ha(v) = ha(w)] = 0. For any two angles θ1 < θ2, the family H is (θ1, θ2, 1 −
θ1
π

, 1 − θ2
π
)-sensitive. In particular, Charikar’s hyperplane hash family is (π3 , π2 , 2

3 , 1
2)-

sensitive.
To illustrate LSH and in particular the hyperplane LSH method described above, Fig-

ure 10.2 shows how hyperplane hashing might work in a two-dimensional setting (d = 2)
where we have a list L = {w1, . . . ,w10} and a query vector v, and we used k = 2 hy-
perplanes in each of t hash tables to find nearby vectors. Preprocessing would consist of
computing and storing each of the list vectors in their corresponding hash buckets, which
involves k inner product computations for each vector for each hash table. Answering a
query can be done by computing a target vector’s hash buckets in each hash table and
searching the vectors in these hash buckets for a nearest neighbor.

10.4 — The Nguyễn–Vidick sieve with hyperplane LSH

Let us now describe how locality-sensitive hashing can be used to speed up sieving,
and in particular how we can speed up the NV-sieve of Nguyễn and Vidick [NV08] us-
ing hyperplane LSH. The same ideas can also be applied to the GaussSieve [MV10b], as
outlined in Section 10.5.

10.4.1 – The Nguyễn–Vidick sieve algorithm. First, recall that the sieving algorithm
of Nguyễn and Vidick [NV08] starts with a long list L of reasonably long, randomly sam-
pled lattice vectors v sampled from a discrete Gaussian over the lattice, using e.g. Klein’s
algorithm [Kle00], and then repeatedly applies a sieve to it to split each list L into a list C
of centers and a new list L ′ of vectors whose norms are at least a geometric factor γ < 1
smaller than the maximum norm of the vectors in L. After repeatedly applying this sieve,

118 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

w1

w2

w3

w4
w5

w6

w8

w7

w9

w10
v

00 01

10 11

00 01

10 11

00 01

10 11

w9, w10

Hash table 1 (T1)

w8

Hash table 2 (T2)

w6, w7, w8

Hash table t (Tt)

. . .

. . .

00

01

10

11

w1, w2

w3, w4, w5

w6, w7, w8

w1, w2, w6, w7

w3

w4, w5, w9, w10

w1, w2

w3, w4, w5, w9

w10

00

01

10

11

00

01

10

11

Figure 10.2: An example of hyperplane LSH, using k = 2 hyperplanes and 2k = 4 buckets in each hash table.
Given 10 list vectors L = {w1, . . . ,w10} and a target vector v, for each of the t hash tables we first compute
v’s hash value (i.e. compute the region in which it lies), look up vectors which have the same hash value, and
compare v to those vectors. Based on these three hash tables, we will find C = {w6,w7,w8,w9,w10} as
the set of candidate near neighbors for v.

discarding L and C and continuing with L← L ′ we eventually hope to be left with a short
list of very short lattice vectors, which contains the shortest vector.

A slightly modified and simplified version of the sieve that maps L onto two sets L ′

and C is described in Algorithm 10.2. Here we have replaced the on-the-fly generation
of the set of centers in the original algorithm by a predetermined random selection of list
points to be used as centers. Note that Nguyễn and Vidick’s analysis is essentially based
on this modified algorithm rather than the on-the-fly generation described in [NV08,
Algorithm 5] and Chapters 9 and 10, and for reducing the space complexity later on it is
essential that we select the set of centers in advance.

In Lines 7–10 of Algorithm 10.1, the Nguyễn–Vidick sieve essentially solves the fol-
lowing search problem through a brute-force linear search:

Find an elementw ∈ C such that ‖v−w‖ 6 γR. (10.5)

To obtain the estimate 20.415d+o(d) for the time complexity and 20.208d+o(d) for the space

10.4. THE NGUYEN–VIDICK SIEVE WITH HYPERPLANE LSH 119

Algorithm 10.1 Nguyễn and Vidick’s lattice sieve (without hyperplane LSH)

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ · R

1: Initialize an empty list L ′

2: Sample C ⊂ L ∩ {x ∈ Rd : ‖x‖ > γ · R} of size poly(d) · (4/3)d/2

3: for each v ∈ L \ C do
4: if ‖v‖ 6 γR then
5: Add v to the list L ′

6: else
7: for eachw ∈ C do
8: if ‖v−w‖ 6 γ · R then
9: Add v−w to the list L ′

10: Continue the loop over “v ∈ L \ C”

complexity, recall that Nguyễn and Vidick further let γ approach 1 in their analysis. This
means that all vectors with a length significantly shorter than γ ·R ≈ R are automatically
added to L ′ in Line 5, and the bottleneck of the time complexity comes from those vectors
vwith γR < ‖v‖ 6 R, i.e., the vectors v lying in a thin spherical shell of thickness (1−γ)R
around the origin. For those vectors vwe have γR ≈ ‖v‖ ≈ R, and for vectorsw ∈ Cm+1

we also know that γR ≈ ‖w‖ ≈ R. This implies that the reduction method described
in (10.5) for γ→ 1 is essentially equivalent to the following angular reduction step:

Find an elementw ∈ C such that θ(v,w) 6 60◦. (10.6)

In the limiting case of γ→ 1, the problems (10.5) and (10.6) are essentially equivalent.

10.4.2 – The (NV-)HashSieve algorithm. Considering the angular notion of reduc-
tion of (10.6), we can clearly see the connection with nearest neighbor searching for the
angular distance or cosine similarity, and how we can fit in angular or hyperplane LSH.
Replacing the brute-force list search overw ∈ C in the original algorithm with the tech-
nique of hyperplane locality-sensitive hashing, we obtain Algorithm 10.2. Blue lines in
Algorithm 10.2 indicate modifications to the original algorithm. Note that the setup costs
of locality-sensitive hashing (building the hash tables) are only paid once, rather than
once for each search.

10.4.3 – Relation with leveled sieving. Overall, the crucial modification we intro-
duce is that by using hash tables and looking up vectors to reduce the target vector with
in these hash tables, we make the search space smaller; instead of comparing a new vec-
tor to all vectors in C, we only compare a vector to a much smaller subset of candidates
C ⊂ C, which mostly contains good, nearby candidates for reduction, and does not con-
tain many of the distant vectors in C to v. This is very similar to leveled sieving (cf.
Chapter 9), where the search space of candidate nearby vectors was reduced by parti-
tioning the space into regions, and for each vector storing in which region it lies. In those
algorithms, two nearby vectors in adjacent regions are not considered for reductions,
which means one needs more vectors to saturate the space (a higher space complexity)
but less time to search the list of candidates for nearby vectors (a lower time complexity).

120 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

Algorithm 10.2 Nguyễn and Vidick’s lattice sieve (with hyperplane LSH)

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ · R

1: Initialize an empty list Lm+1

2: Sample C ⊂ L ∩ {x ∈ Rd : ‖x‖ > γ · R} of size poly(d) · (4/3)d/2

3: Initialize k empty hash tables Ti and sample k · t random hash functions hi,j ∈ H

4: for eachw ∈ C do
5: Addw to the buckets Ti[hi(w)] in the t hash tables Ti
6: for each v ∈ L \ C do
7: if ‖v‖ 6 γR then
8: Add v to the list L ′

9: else

10: Obtain the set of candidates C =
t⋃
i=1
Ti[hi(v)]

11: for eachw ∈ C do
12: if ‖v−w‖ 6 γ · R then
13: Add v−w to the list L ′

14: Continue the loop over “v ∈ L \ C”

Two key differences between leveled sieving and hyperplane LSH are the way the par-
titions of Rd are chosen (using giant balls in leveled sieving, similar to the Euclidean LSH
method of [AI06], versus using random hyperplanes here), and whereas LSH guaran-
tees that nearby vectors are found with high (constant) probability using (exponentially)
many hash tables, leveled sieving only uses one “hash table” and pays for this with a
larger list size.

10.4.4 – High-dimensional intuition. To estimate the complexity of the hyperplane
LSH-based lattice sieve, we will again make use of Assumption 8.1, which says that the
angle Θ(v,w) between list vectors v,w follows the same distribution as the distribution
of angles Θ(v,w) obtained by drawing v,w ∈ Sd−1 at random from the unit sphere.

Note that under this assumption, in high dimensions angles close to 90◦ are much
more likely to occur between pairs of vectors than smaller angles. So one might guess
that for two vectors v,w ∈ L, with high probability their angle is very close to 90◦. On
the other hand, nearby vectorsw ∈ L that can reduce our target vector v always have an
angle less than 60◦ with v, and by similar arguments we expect this angle to always be
close to 60◦ and not much less than this. Under the extreme assumption that all angles
between vectors v,w that do not satisfy the condition ‖v±w‖ 6 γ·R are exactly 90◦ (and
angles of nearby pairs of vectors are at most 60◦), we obtain the following preliminary
estimate for the costs of this algorithm. Note that this preliminary estimate does not make
use of Assumption 8.1.

Proposition 10.3. Assuming that non-reducing vectors are always pairwise orthogonal, the
NV-sieve with hyperplane LSH with parameters k = 0.2075d+ o(d) and t = 20.1214d+o(d)

heuristically solves SVP in time and space 20.3289d+o(d). By varying the values k and t, we
further obtain the trade-off between the space and time complexities indicated by the straight
dashed line in Figure 10.1.

10.4. THE NGUYEN–VIDICK SIEVE WITH HYPERPLANE LSH 121

Proof. If all ‘random angles’ are 90◦, then we can simply let θ1 = π
3 and θ2 = π

2 and
use the hash family described in Section 10.3 with p1 = 2

3 and p2 = 1
2 . Applying

Lemma 10.2, where ρ = log(1/p1)
log(1/p2)

= log2(
3
2) ≈ 0.585, we can perform a single search in

time nρ = 20.1214d+o(d) using t = 20.1214d+o(d) hash tables. Since we need to perform
these searches Õ(n) times, and we need to repeat the whole sieving procedure poly(d)
times, the time complexity is of the order Õ(n1+ρ) = 20.3289d+o(d). The space complex-
ity is dominated by having to store all n vectors in t = Õ(nρ) hash tables, leading to a
space complexity of Õ(n1+ρ) = 20.3289d+o(d) as well.

10.4.5 – Solving SVP in time and space 20.3366d+o(d). Of course, in practice not
all pairwise angles between ‘reduced’ vectors are actually 90◦, and one should carefully
analyze what is the real probability that a vector w whose angle with v is more than
60◦, is found as a candidate due to a collision in one of the hash tables. The following
theorem follows from this analysis and shows how to choose the parameters to optimize
the asymptotic time complexity.

Theorem 10.4. The Nguyễn–Vidick sieve with hyperplane LSH with parameters

k = 0.2206d+ o(d), t = 20.1290d+o(d), (10.7)

and γ → 1 heuristically solves SVP in time and space 20.3366d+o(d). Tuning k and t differ-
ently, we further obtain the trade-off indicated by the solid blue line in Figure 10.1.

Note that the optimized values in Theorem 10.4 and Proposition 10.3, and the asso-
ciated curves in Figure 10.1 are very similar. In other words, the simple estimate based
on the intuition that in high dimensions “everything is orthogonal” is not far off. Also
note that as there are 2k � n hash buckets in each table, the space complexity would
be slightly higher (20.3496d+o(d)) if hash tables are naively stored as arrays. To achieve
the minimum asymptotic time and space complexities, one should only store non-empty
buckets in memory as asymptotically most buckets are empty.

To prove the claims in Theorem 10.4, we will show how to choose a sequence of
parameters {(kd, td)}d∈N such that for large d, the following holds:

1. The average probability that a reducing vector w collides with v in at least one of
the t hash tables is at least constant in d:

p∗1 = Phi,j∈H[v,w collide | θ(v,w) 6 π
3] > 1 − ε. (0 < ε 6= ε(d)) (10.8)

2. The average probability that a non-reducing vectorw collides with v in at least one
of the t hash tables is exponentially small:

p∗2 = Phi,j∈cH[v,w collide | θ(v,w) > π
3] 6 n

−0.3782+o(1). (10.9)

3. The number of hash tables grows as t = n0.6218+o(1).
This would imply that for each search, the number of candidate vectors is of the order n ·
n−0.3782 = n0.6218 and the number of hash computations is also t = n0.6218+o(1). Overall,
we heuristically expect to iterate searching the list Õ(n) times, so after substituting n =
20.2075d+o(d) this leads to the following asymptotic time and space complexities:

• Time (hashing): Õ(n · t) = 20.3366d+o(d).
• Time (searching): Õ(n2 · p∗2) = 20.3366d+o(d).
• Space: Õ(n · t) = 20.3366d+o(d).

In the following three subsections we will prove Equations (10.8) and (10.9).

122 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

10.4.6 – Nearby vectors collide with constant probability. We first prove that re-
ducing vectors often collide in at least one of the hash tables, given that k is a suitable
function of t. In the next subsection we then show how p∗2 scales as a function of k and t
and how to choose k and t to minimize the overall time complexity. Finally we describe
how to obtain the trade-off between the space and time complexities of Figure 10.1 by
choosing k and t slightly differently.

Lemma 10.5. Let ε > 0 and let k = log3/2(t) − log3/2(ln 1/ε). Then the probability that
reducing vectors collide in at least one of the hash tables is at least 1 − ε.

Proof. The probability that a reducing vector w is a candidate vector, given the angle
Θ = Θ(v,w) ∈ (0, π3), is

p∗1 = EΘ∈(0,π3) [p
∗(Θ)] = EΘ∈(0,π3)

1 −

(
1 −

(
1 −

Θ

π

)k)t , (10.10)

where the angle Θ is a random variable with a certain distribution on (0, π3). Since the
argument on the right hand side is strictly decreasing in Θ, we can obtain a lower bound
by substituting Θ = π

3 . Using the bound 1 − x < e−x which holds for all x, we obtain:

p∗1 > 1 −

(
1 −

ln(1/ε)
t

)t
> 1 − exp(− ln(1/ε)) = 1 − ε. (10.11)

This completes the proof.

Observe that Lemma 10.5 again does not make use of Assumption 8.1. We will only
use this assumption for analyzing the collision probabilities for distant vectors below.

10.4.7 – Distant vectors collide with low probability. Proving that distant vectors
at angle more than 60◦ do not often lead to hash collisions is more involved. We need to
average the probability of a collision over all possible angles between v andw, given that
v and w cannot reduce one another, where we thus have to take the density of angles
Θ into account. Since it is not so easy to compute the exact distribution of angles that
may occur between list vectors throughout the algorithm, we will use Assumption 8.1.
To obtain a tight bound on the average probability of a “useless hash collision" we will
further use the following lemma about the surface area of hyperspheres. This formula
can be found in e.g. [CS99, p. 10, Eq. (19)].

Lemma 10.6. The hypersurface area or volume of the d-dimensional hypersphere of radius
R, defined as Sd−1(R) = {x ∈ Rd : ‖x‖ = R}, is equal to

Ad(R) =
2πd/2

Γ(d/2)
Rd−1. (10.12)

Assumption 8.1 together with the above lemma allow us to derive the density of angles
f(θ) between non-reducing vectors explicitly as follows.

10.4. THE NGUYEN–VIDICK SIEVE WITH HYPERPLANE LSH 123

Lemma 10.7. If Assumption 8.1 holds, then the probability density function f(θ) of angles
between non-reducing vectors satisfies

f(θ) =

√
2d
π

(sin θ)d−2 [1 + o(1)] = 2log2(sinθ)d+o(d). (10.13)

Proof. Suppose without loss of generality that v = (1, 0, . . . , 0) is fixed. To derive the
density at a given angle θ, we basically need to know the fraction of points in Sd−1(R)
that have this angle with v. Note that if the angle is fixed at θ, then the first coordinate
ofw is cos θ and so the remaining coordinates ofw must satisfy

w2
2 + · · ·+w2

d = 1 − cos2 θ = sin2 θ. (10.14)

This equation defines a (d−1)-dimensional hypersphere with radius sin θ, whose volume
follows from Lemma 10.6. Dividing by the total volume of Sd−1(R), the density function
f satisfies

f(θ) =
1
M
Ad−1(sin θ), where M =

∫π/2

π/3
Ad−1(sinφ)dφ. (10.15)

For the normalizing constant M, note that integrating the given expression from 0 to π
2

would give us exactly half the hypersurface area of the d-dimensional hypersphere of
radius 1, and the contribution of angles less than π

3 is negligible for large d. Writing out
the expressions for Ad−1(sin θ) and M ∼ Ad(1), we therefore obtain

f(θ) =
Ad−1(sin θ)

(1 − o(1)) 1
2Ad(1)

=
2√
π
·
Γ(d2)

Γ(d−1
2)
· (sin θ)d−2 [1 + o(1)] . (10.16)

Noting that Γ(x+ 1
2) ∼
√
x · Γ(x) for large x, the result follows.

We are now ready to prove the main result, showing that bad collisions occur with
exponentially small probability. We first prove a general result relating the probability of
a bad collision to the parameter t, and then show how to choose t to balance the time and
space complexities. Here we write γ1 = 1

2 log2(
4
3) ≈ 0.2075, γ2 = log2(

3
2) ≈ 0.5850,

and we write n = 2cn·d and t = 2ct·d for certain constants cn and ct.

Lemma 10.8. Let cn > γ1. Then, if Assumption 8.1 holds, for large d the probability of
bad collisions is bounded by

p∗2 = P{hi,j}⊂H(v,w collide | θ(v,w) > π
3) 6 n

−α+o(1), (10.17)

where α ∈ (0, 1) is defined as2

α =
−1
cn

[
ct + max

θ∈(π3 ,π2)

{
log2(sin θ) +

ct

γ2
log2

(
1 −

θ

π

)}]
. (10.18)

2The inequality α > 0 can be derived by splitting the maximum in (10.18) in two parts, and solving each
separately. Strictly speaking the inequalityα < 1 is an assumption on the other parameters, which is ultimately
tangential to the result; for all parameters of interest, the expression for α in (10.18) will not be larger than 1.

124 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

Proof. First, if we know the angle θ ∈ (π3 , π2) between two non-reducing vectors, then
the probability of a collision is p∗(θ) = 1 − (1 − (1 − θ

π
)k)t. Letting f(θ) denote the

density of angles θ on Ω, we have

p∗2 = EΘ∈(π3 ,π2) [p
∗(Θ)] =

∫π/2

π/3
f(θ)p∗(θ)dθ. (10.19)

Substituting p∗(θ) = 1−(1−(1− θ
π
)k)t and substituting the expression of Lemma 10.7

for f(θ), we obtain

p∗2 =

√
2d
π

∫π/2

π/3
(sin θ)d−2 [1 + o(1)]

1 −

(
1 −

(
1 −

θ

π

)k)tdθ. (10.20)

Next, note that for θ � π
3 we have t � (1 − θ

π
)−k and so (1 −

(
1 − θ

π

)k
)t ≈ 1 −

t
(
1 − θ

π

)k
. In that case, we can simplify the expression between square brackets to

t ·
(
1 − θ

π

)k
. However, the integration range includes π3 as well, so to be careful we will

divide the range of integration into two disjoint intervals [π3 , π3 +δ] and [π3 +δ, π2], where
δ = O(

√
d):

p∗2 =

∫π/3+δ

π/3
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I1

+

∫π/2

π/3+δ
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I2

. (10.21)

Bounding I1. Using f(θ) 6 f(π3 + δ) = poly(d) · sind−2 (π
3 + δ

)
and p∗(θ) 6 p∗(π3) =

1 − (1 − ln(1/ε)
t

)t ≈ 1 − ε, we obtain

I1 6 poly(d) · δ(1 − ε) sind−2
(π

3
+ δ
)

. (10.22)

A Taylor expansion around θ = π
3 of sin θ tells us that sin(π3 + δ) = 1

2

√
3 [1 +O(δ)],

which for constant ε ∈ (0, 1) leads to

I1 6 2−γ1d+o(d) (1 +O(δ))d = 2−γ1d+o(d). (10.23)

Bounding I2. For I2, this choice of δ is sufficient to make the approximation (1 −(
1 − θ

π

)k
)t ≈ 1 − t

(
1 − θ

π

)k
work. So for I2 we obtain the simplified expression

I2 6 poly(d) · t ·
∫π/2

π/3+δ
(sin θ)d−2

(
1 −

θ

π

)k
dθ (10.24)

6
∫π/2

π/3
2d log2(sinθ)+k log2(1− θ

π
)+ctd+o(d)dθ. (10.25)

Note that the integrand is exponential in d (assuming k is at most linear d) and the
exponent is a continuous, differentiable function of θ. So the asymptotic behavior of the
integral is the same as the asymptotic behavior of its maximum value:

log2 I2 6 ctd+ max
θ∈(π3 ,π2)

{
d log2(sin θ) + k log2

(
1 −

θ

π

)}
+ o(d). (10.26)

10.4. THE NGUYEN–VIDICK SIEVE WITH HYPERPLANE LSH 125

Bounding p∗2 = I1 + I2. Combining the results from (10.23) and (10.26), and substi-
tuting the expression for k from Lemma 10.5 (assuming ε > 0 is fixed), we have

log2 p
∗
2

d
6 max

{
−γ1, ct + max

θ∈(π3 ,π2)

{
log2(sin θ) +

ct

γ2
log2

(
1 −

θ

π

)}}
+ o(1).

(10.27)

In the end, we would like to prove that p∗2 6 n−α, or equivalently 1
d

log2 p
∗
2 6 −αcn.

To complete the proof, it therefore suffices to prove the following two inequalities:

−γ1 6 −αcn + o(1). (10.28)

ct + max
θ∈(π3 ,π2)

{
log2(sin θ) +

ct

γ2
log2

(
1 −

θ

π

)}
6 −αcn + o(1). (10.29)

The first inequality follows from the assumptions n = 2cnd+o(d) with cn > γ1 and
α < 1. For the second inequality, we isolate α to obtain

α 6
−1
cn

[
ct + max

θ∈(π3 ,π2)

{
log2(sin θ) +

ct

γ2
log2

(
1 −

θ

π

)}]
+ o(1). (10.30)

Since we want α to be as large as possible, so that p∗2 is as small as possible, we set α
equal to its upper bound, leading to the result.

10.4.8 – Balancing the parameters. To return to actual consequences for the com-
plexity of the scheme, recall that the overall time and space complexities are given by:

• Time (hashing): Õ(n · t) = 2(cn+ct)d+o(d).
• Time (searching): Õ(n2 · p∗2) = 2(cn+(1−α)cn)d+o(d).
• Time (overall): 2(cn+max{ct,(1−α)cn})d+o(d).
• Space: Õ(n · t) = 2(cn+ct)d+o(d).

Writing the overall time complexity as 2ctimed+o(d) and the asymptotic space complexity
as 2cspaced+o(d), this means

ctime = cn + max{ct, (1 − α)cn}, cspace = cn + ct. (10.31)

Also recall that as we will still find nearby vectors with high probability if they exist
similar to the Nguyễn–Vidick sieve, we expect the required list size to be of the order
n = (4/3)d/2+o(d)/(1 − ε), which for constant ε > 0 means that cd = γ1. To balance
the asymptotic time complexities for hashing and searching, so that the time and space
complexities are the same and the time complexity is minimized, we solve (1 − α)γ1 =
ct numerically for ct, where we note that α is implicitly a function of ct as well. The
following corollary describes the result of this optimization, where θ∗ denotes the angle
at which the upper bound for α is attained in Lemma 10.8.

Corollary 10.9. Taking ct ≈ 0.129043 leads to:

θ∗ ≈ 0.458921π, α ≈ 0.378163, ctime ≈ 0.336562, cspace ≈ 0.336562.

In other words, using t ≈ 20.129043d hash tables and a hash length of k ≈ 0.220600d, the
heuristic time and space complexities of the algorithm are balanced at 20.336562d+o(d).

126 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

Algorithm 10.3 Nguyễn and Vidick’s lattice sieve (with hyperplane LSH, space-efficient)

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ · R

1: Initialize an empty list L ′

2: Sample C ⊂ L ∩ {x ∈ Rd : ‖x‖ > γ · R} of size poly(d) · (4/3)d/2

3: for each i ∈ {1, . . . , t} do
4: Initialize an empty hash table T and sample k random hash functions hi,j ∈ H

5: for eachw ∈ C do
6: Addw to the hash table T , to bucket T [hi(w)]

7: for each v ∈ L \ C do
8: if ‖v‖ 6 γR then
9: Add v to the list L ′

10: else
11: Obtain the (partial) set of candidates C = T [hi(v)]
12: for eachw ∈ C do
13: if ‖v−w‖ 6 γR then
14: Add v to the list L ′

15: Continue the loop over “v ∈ L \ C”

10.4.9 – Trade-offs between space and time. Finally, setting ct = 0 leads to the orig-
inal Nguyễn–Vidick sieve, while ct ≈ 0.129043 minimizes the heuristic time complexity
at the cost of more space. One can obtain a continuous time-memory trade-off between
the Nguyễn–Vidick sieve and the new algorithm by considering values ct ∈ (0, 0.129043).
Numerically evaluating the resulting time and space complexities for this range of values
of ct leads to the blue curve shown in Figure 10.1.

10.4.10 – Solving SVP in time 20.3366d+o(d) and space 20.2075d+o(d). For the
Nguyễn–Vidick sieve [NV08], we can actually process the hash tables sequentially and
eliminate the need of storing exponentially many hash tables in memory at the same time.
The simple but crucial modification that we can make to this algorithm, in similar fashion
to the sequential filtering idea described in [BGJ15, MO15], is that we process the hash
tables one by one; we first construct the first hash table, add all vectors in C to this hash
table, and look for short difference vectors to add to L ′. By then deleting this hash table
from memory and building a new hash table (repeating this t = 20.13d+o(d) times) we
keep adding more and more vectors to L ′ until finally we will again have found the exact
same set of short difference vectors for the next iteration. In this case however we never
stored all hash tables in memory at the same time, and the memory increase compared
to the NV-sieve is asymptotically negligible. This modification leads to Algorithm 10.3,
and the previous discussion also immediately leads to the following result.

Theorem 10.10. The space-efficient Nguyễn–Vidick sieve with hyperplane LSH with

k = 0.2206d+ o(d), t = 20.1290d+o(d), (10.32)

and γ → 1 heuristically solves SVP in time 20.3366d+o(d) and space 20.2075d+o(d). These
complexities are indicated by the leftmost blue point in Figure 10.1.

10.5. THE GAUSSSIEVE WITH HYPERPLANE LSH 127

Algorithm 10.4 The GaussSieve algorithm (without hyperplane LSH)

1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for eachw ∈ L do
5: Reduce v withw
6: Reducew with v
7: if w has changed then
8: Removew from the list L
9: Addw to the stack S (unlessw = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L
14: until v is a shortest vector

Note that this choice of parameters k, t still balances the costs of computing hashes
and comparing vectors; the fact that the blue point in Figure 10.1 does not lie on the “Time
= Space”-diagonal does not mean we can reduce the time complexity by increasing t.

10.5 — The GaussSieve with hyperplane LSH

Let us next describe how hyperplane LSH can also be used to speed up the GaussSieve
of Micciancio and Voulgaris [MV10b]. This algorithm is our main focus for practical appli-
cations, since it seems to be the fastest and most space-efficient sieving algorithm to date,
which is further motivated by the extensive attention it has received in recent years [BN-
vdP14, FBB+14, IKMT14, Kle14, MODB14, MTB14, MS11, Sch11, Sch13] and by the fact
that the current highest sieving records in the SVP challenge database were obtained
using (a modification of) the GaussSieve [Kle14,SG15].

10.5.1 – The GaussSieve algorithm. A simplified version of the GaussSieve algo-
rithm of Micciancio and Voulgaris is described in Algorithm 10.4. The algorithm itera-
tively builds a longer and longer list L of lattice vectors, occasionally reducing the lengths
of list vectors in the process, until at some point this list L contains a shortest vector. Vec-
tors are again sampled from a discrete Gaussian over the lattice, using e.g. the sampling
algorithm of Klein [Kle00,MV10b], or popped from the stack if the stack is not empty. If
list vectors are modified or newly sampled vectors are reduced, they are pushed to the
stack.

In the GaussSieve, the reductions in Lines 5 and 6 follow the rule:

Reduce u1 with u2 : if ‖u1 ± u2‖ < ‖u1‖ then u1 ← u1 ± u2. (10.33)

Throughout the execution of the algorithm, the list L is always pairwise reduced w.r.t.
(10.33), i.e., ‖w1 ± w2‖ > max{‖w1‖, ‖w2‖} for all w1,w2 ∈ L. This implies that
two list vectors w1,w2 ∈ L always have an angle of at least 60◦; otherwise one of them
would have been used to reduce the other before being added to the list. Since all angles
between list vectors are always at least 60◦, the size of L is bounded by the kissing constant

128 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

in dimension d: the maximum number of vectors in Rd one can find such that any two
vectors have an angle of at least 60◦. Bounds and conjectures on the kissing constant
in high dimensions lead us to believe that asymptotically the size of the list L will not
exceed 20.2075d+o(d) [CS99], which has been verified in various experiments with the
GaussSieve (e.g. [BNvdP14,MODB14,MV10b]).

While the space complexity of the GaussSieve is reasonably well understood, there
are no proven bounds on the time complexity of this algorithm. One might estimate
that the time complexity is determined by the double loop over L: at any time each
pair of vectors w1,w2 ∈ L was compared at least once to see if one could reduce the
other, so the time complexity is at least quadratic in |L|. The algorithm further seems to
display a similar asymptotic behavior as the NV-sieve in experiments [MV10b,NV08], for
which the asymptotic time complexity is heuristically known to be quadratic in |L|, i.e.,
of the order 20.415d+o(d). One might therefore conjecture that the GaussSieve also has
a time complexity of 20.415d+o(d), which closely matches previous experiments with the
GaussSieve in high dimensions [Kle14].

Since these conjectured bounds on the space and time complexities are only based
on the fact that each pair of vectors w1,w2 ∈ L has an angle of at least 60◦, the same
estimates apply to any reduction method that guarantees that angles between vectors in
L are at least 60◦. In particular, if we reduce vectors only if their angle is at most 60◦

using the following rule:

Reduce u1 with u2 : if θ(u1,±u2) 6 60◦ and ‖u1‖ > ‖u2‖ then u1 ← u1 ∓ u2,
(10.34)

then we expect the same heuristic bounds on the time and space complexities to apply.
More precisely, the list size would again be bounded by 20.208d+o(d), and the time com-
plexity may again be estimated to be of the order 20.415d+o(d). Basic experiments show
that, although with this notion of reduction the list size increases, the increase in the list
size appears to be sub-exponential in d.

10.5.2 – The HashSieve algorithm. Replacing the notion of reduction of (10.33) by
the weaker one of (10.34), we can clearly see the connection with hyperplane hashing.
Considering the GaussSieve with angular reductions, we are repeatedly sampling new
target vectors v (with each time almost the same list L), and each time we are looking
for vectors w ∈ L whose angle with v is at most 60◦. Replacing the brute-force list
search in the original algorithm with the technique of hyperplane locality-sensitive hash-
ing, we obtain Algorithm 10.5. Blue lines in Algorithm 10.5 indicate modifications to the
GaussSieve. Note that the setup costs of locality-sensitive hashing are again spread out
over the various iterations; at each iteration we only update the parts of the hash tables
that were affected by updating L.

Finally, there is no point in skipping potential reductions in Lines 7 and 8. So while for
our intuition and for the theoretical motivation we may consider the case where the re-
ductions are based on (10.34), in practice we will again reduce vectors based on (10.33).

10.5.3 – Reducing the space complexity with probing. For the Nguyễn-Vidick sieve,
recall that we could process the hash tables sequentially rather than in parallel, to prevent
getting an increased space complexity. For the GaussSieve the same trick does not seem
to apply, and we only obtain the (conjectured) space/time trade-off of Theorem 10.4,

10.5. THE GAUSSSIEVE WITH HYPERPLANE LSH 129

Algorithm 10.5 The GaussSieve algorithm (with hyperplane LSH) – The HashSieve

1: Initialize an empty list L and an empty stack S
2: Initialize t empty hash tables Ti and sample k · t random hash functions hi,j ∈ H

3: repeat
4: Get a vector v from the stack (or sample a new one if S = ∅)
5: Obtain the set of candidates C =

⋃t
i=1 Ti[hi(v)]

6: for eachw ∈ C do
7: Reduce v withw
8: Reducew with v
9: ifw has changed then

10: Removew from the list L
11: Removew from all t hash tables Ti
12: Addw to the stack S (unlessw = 0)
13: if v has changed then
14: Add v to the stack S (unless v = 0)
15: else
16: Add v to the list L
17: Add v to all t hash tables Ti
18: until v is a shortest vector

illustrated in Figure 10.1. As the practicability of sieving seems bounded both by the
required amounts of time and memory, this trade-off may not offer much of an improve-
ment overall. Being able to handle the increased memory complexity is crucial to making
this method practical in higher dimensions.

To decrease the memory requirement of the hash tables, Panigrahy [Pan06] suggested
that instead of using many hash tables and checking only one hash bucket in each table
for candidate nearby vectors, one could also probe several hash buckets in each hash table
for nearby vectors, and use fewer hash tables overall to get a similar quality for the list
of candidates, using significantly less memory.

Construction. To illustrate how this method of probing might help in reducing the
memory, consider the following modification to the HashSieve algorithm. In each hash
table Ti, instead of only checking the bucket labeled hi(v) ∈ {0, 1}k for candidates, we
also check buckets labeled hi(v) ⊕ ej for all j ∈ [k], where ej is the jth unit vector in
k dimensions and ⊕ represents addition in Zk2 (bitwise XOR). In other words, we now
consider a vectorw ∈ L as a candidate for reduction if and only if it is separated from v
by at most one of the random hyperplanes defined by the hash vectors ai,j. This means
that in each table we now check k + 1 hash buckets, instead of only one bucket: we do
not only check the vectors with an exact match on all k hash values, but we also consider
vectors with k− 1 matches.

Example. To make this construction even more explicit, consider the following ex-
ample. Suppose we use a hash length of k = 5 and we have a vector v with h(v) =
(h1(v),h2(v),h3(v),h4(v),h5(v)) = (0, 0, 1, 1, 1). Now the bucket most likely to con-
tain nearby vectors is the bucket labeled (0, 0, 1, 1, 1), which contains all vectors lying on
the same side of five random hyperplanes as v. However, also those buckets labeled

130 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

(1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 0, 1, 1, 0) are quite likely to
contain nearby vectors; these buckets contain vectors in adjacent hash regions with four
equal hash values and only one different hash value, i.e. one hyperplane separating these
vectors from our target vector v. Checking these buckets as well may lead to finding more
nearby vectors, while we still only check a small fraction of all vectors spread out over all
the 32 hash buckets.

Analysis. To analyze the effect of this modification on the algorithm, let us again make
the simplifying assumption that non-reduced vectors have an angle of at most 60◦ with
v, and reduced vectors have an angle of exactly 90◦ with v. For non-reduced vectors, the
probability that none of the hyperplanes separate v and w is (2

3)
k, and the probability

that at most one of the hyperplanes separates these vectors is (2
3)
k + k(2

3)
k−1(1

3)
1 =

(2
3)
k
[
1 + k

2

]
. Similarly, for reduced vectors the probability of two vectors landing in the

same bucket is (1
2)
k, and the probability of landing in buckets differing in at most one

bit is (1
2)
k [1 + k]. Comparing the probabilities of finding given vectors with and without

this technique of probing multiple buckets, we see that with probing:
• The probability of finding a nearby vector increases by a factor 1 + k

2 .
• The probability of finding a distant vector increases by a factor 1 + k.

Note that an increase in the probability of finding nearby vectors in a hash table by a
factor α roughly translates to a decrease of t by a factor α, which is motivated by the
approximations 1 − (1 − αpk)t/α ≈ t

α
· αpk = t · pk ≈ 1 − (1 − pk)t. Therefore, using

this technique of probing, we can use the same value k as before, but a smaller value
t1 = t

1+k/2 now suffices to still find nearby vectors with high probability. With these
values of k and t1, the probability of finding distant vectors increases by roughly a factor

1+k
1+k/2 < 2, thus leading to up to 2 times more comparisons overall, and an increase in the
time complexity by a factor less than 2. But more importantly, the memory requirement
of the hash tables decreases by a factor 1 + k

2 = O(d). To illustrate the possible impact
of probing: in dimension 80 we have k ≈ 18 by Theorem 10.4, and so probing might
lead to a loss of a factor 2 in the time complexity, and a gain a factor 10 in the memory
requirement.

Multiprobe. The procedure of probing adjacent buckets (buckets at Hamming distance
1) can trivially be generalized to considering all buckets with labels that differ from the
hash value hi(v) ∈ {0, 1}k in at most 0 6 ` 6 k bits. For ` = O(1) and large d, this
implies a reduction in the number of hash tables (and the space complexity) by a factor
1 + 1

2k + 1
4

(
k
2

)
+ · · · + 1

2`
(
k
`

)
= O(d`) and an increase in the time complexity by less

than a factor 2` = O(1). For instance, in dimension 120, without probing we have
(k, t0 = t) ≈ (26, 45700); with one level of probing we have (k, t1) ≈ (26, 3200); and
with two levels of probing we have (k, t2) ≈ (26, 450). Using two levels of probing, in
dimension 120 the space complexity of the hash tables is reduced by a factor more than
100, at the cost of a factor less than 4 increase of the overall time complexity.

Besides using multiple levels of probing and brute-forcing all buckets at each level, one
could also consider more sophisticated ways of choosing which buckets to check for can-
didates. If aTi,jv ≈ 0 then it makes more sense to consider the bucket labeled hi(v)⊕ ej
than if aTi,jv � 0 or aTi,jv � 0. In other words, if a vector v lies close to the hyper-
plane defined by ai,j, it makes more sense to consider vectors on the other side of the
hyperplane as well, than if v lies far away from the hyperplane. Algorithmically speaking,

10.5. THE GAUSSSIEVE WITH HYPERPLANE LSH 131

given v and any bucket b ∈ {0, 1}k, one could for instance compute the probability that a
reducing vector is in this bucket labeled b, and only check those buckets with the highest
probabilities of containing nearby vectors. For more details, see e.g. [LJW+07].

10.5.4 – Experimental results in moderate dimensions. To verify the theoretical
speed-ups, we implemented both the GaussSieve and the GaussSieve-based HashSieve to
try to compare the asymptotic trends of these algorithms. For implementing the Hash-
Sieve, we note that we can use various simple tweaks to further improve the algorithm’s
performance. These include:

(a) With the HashSieve, maintaining a list L is no longer needed, as the hash tables
implicitly keep track of which vectors are in the list.

(b) Instead of making a list of candidates, we go through the hash tables one by one,
checking if collisions in this table lead to reductions. If a nearby vector is found
early on, this may save up to t · k hash computations and table lookups.

(c) As hi(−v) = −hi(v) the hash of −v can be computed “for free” from hi(v).
(d) Instead of comparing ±v to all candidate vectors w, we only compare +v to the

vectors in the bucket hi(v) and −v to the vectors in the bucket labeled −hi(v).
This further reduces the number of comparisons by a factor 2 compared to the
GaussSieve, where both comparisons are done for each potential reduction.

(e) For choosing vectors ai,j to use for the hash functions hi, there is no reason to
assume that drawing these vectors from a specific, sufficiently large random sub-
set of the unit sphere would lead to substantially different results. In particular,
using sparse vectors ai,j makes computing hash values significantly cheaper, while
retaining the same performance [Ach01,Ach03,LHC06]. Our experiments indicate
that even if all vectors ai,j have only two equal non-zero entries, the algorithm still
finds the shortest vector in (roughly) the same number of iterations as with random
vectors ai,j.

(f) We should not store the actual vectors, but only pointers to vectors in each hash
table Ti. This means that compared to the GaussSieve, the space complexity roughly
increases fromO(n ·d) toO(n ·d+n ·t) instead of toO(n ·d ·t), i.e., an asymptotic
increase of a factor t/d rather than t.

With these tweaks, we performed several experiments of finding shortest vectors using the
lattices of the SVP challenge [SG15]. We generated lattice bases for different seeds and
different dimensions using the SVP challenge generator, used NTL [Sho15] to preprocess
the bases (LLL reduction [LLL82] with δ = 0.99), and we then used our implementations
of the GaussSieve and HashSieve to obtain these results. For the HashSieve we chose k
and t by rounding the theoretical estimates of Theorem 10.4 to the nearest integers, i.e.,
k = b0.2206de and t = b20.1290de (see Figure 10.3a). Note that clearly there are ways to
further speed up both the GaussSieve and the HashSieve, using e.g. better preprocessing,
vectorized code, parallel implementations, optimized samplers, etc. The purpose of our
experiments is only to obtain a fair comparison of the two algorithms and to estimate and
compare the asymptotic behaviors of these algorithms. Details on a more optimized and
parallelized implementation of the HashSieve are given in [MLB15].

Computations. Figure 10.3b shows the number of inner products computed by the
HashSieve for comparing vectors and for computing hashes. We have chosen k and t so
that the total time for each of these operations is roughly balanced, and indeed this seems

132 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

Dimension (d) 40 45 50 55 60 65 70 75 80 85 90 95 100

Hash length (k) 9 10 11 12 13 14 15 17 18 19 20 21 22
Number of hash tables. . .
. . . without probing (t) 36 56 87 137 214 334 523 817 1278 1999 3126 4888 7643
. . . with 1-level probing (t1) 7 9 13 20 29 42 62 86 128 190 284 425 637
. . . with 2-level probing (t2) 2 3 4 6 8 11 15 19 26 38 53 76 110

(a) Parameters in the HashSieve (the values of Theorem 10.4, rounded to the nearest integer), without
probing (k, t), with one level of probing (k, t1), and with two levels of probing (k, t2).

○

○
○○

○
○○

○
○
○○

○
○
○○

○
○
○○

○○
○
○○

○○
○○

○
○○

○

★★
★★
★★★

★
★★★

★★
★★
★★
★★
★★
★
★★★

★
★★
★★
★

★

○

40 50 60 70 80
106

107

108

109

1010

1011

1012

(b) HashSieve computations (without probing)

×××××
××××

××××
××××

××××
×××

×××××
××××

××

●●●
●
●●●

●
●●●

●●
●●●

●
●●●

●●
●●●●

●●●
●●

●●●
●
●●●●

●
●

□□□□□
□□□

□□□□□
□□□□

□□□□□
□□□□

□□□□□
□□□□

□□□□□
□

×
●

□

40 50 60 70 80
10

100

1000

104

105

106

107

(c) List sizes

××

×

×
×
××
××
××
××
××
××
××
××
××
××
××
××
××
××
××
××

●
●●

●
●●

●
●
●●

●
●
●
●
●
●
●
●
●●

●
●
●
●●

●●
●
●●

●
●
●●

●●
●
●
●●

●

□□
□□□

□□
□
□□
□□
□□
□□
□□
□□
□□
□□
□□
□□
□□
□□
□□
□□□

□□
□□

×
●

□

40 50 60 70 80

1

10

100

1000

104

105

(d) Time complexities

××××
×××

×××
×××

××××
××××

×××
××××

×××
××××

●●
●●

●●
●●

●●
●●

●
●●

●●
●●

●●
●
●●

●●
●●

●●
●
●●

●●
●●

●●
●
●

□□□□
□□□

□□
□□□□

□□□
□□
□□□□

□□□
□□
□□□

□□
□□□

□□□□
□
□

×
●

□

40 50 60 70 80

104

105

106

107

108

109

(e) Space complexities

Figure 10.3: Experimental data obtained from applying the GaussSieve and HashSieve (with/without probing)
to LLL-reduced random lattice bases. Markers indicate experimental data, lines and line labels represent least-
squares fits of the data. Note that the step-wise behavior of some curves can be explained by the fact that the
parameter k is small but integral, and increases by 1 only once every four to five dimensions.

10.5. THE GAUSSSIEVE WITH HYPERPLANE LSH 133

to be the case. The total number of inner products for hashing seems to be a constant
factor higher than the total number of inner products computed for comparing vectors,
which may also be desirable, as hashing is cheaper than comparing vectors using sparse
hash vectors. Tuning the parameters differently may slightly change this ratio.

List sizes. In the analysis, we assumed that if reductions are missed with a constant
probability ε = O(1), then the list size also increases by a factor approximately 1/(1 −
ε) = O(1). Figure 10.3c seems to support this intuition, as indeed the list sizes in the
HashSieve seem to be a (small) constant factor larger than in the GaussSieve.

Time complexities. Figure 10.3d compares the timings of the GaussSieve and Hash-
Sieve on a single core of a Dell Optiplex 780, which has a processor speed of 2.66 GHz.
Theoretically, we expect to achieve a speed-up of roughly 20.078d for each list search, and
in practice we see that the asymptotic speed-up of the HashSieve over the GaussSieve is
close to 20.07d using a least-squares fit.

Note that the coefficients in the least-squares fits for the time complexities of the
GaussSieve and HashSieve are higher than theory suggests, which is in fact consis-
tent with previous experiments in low dimensions [FBB+14, IKMT14, MTB14, MODB14,
MV10b]. This phenomenon seems to be caused purely by the low dimensionality of our
experiments. Figure 10.3d shows that in higher dimensions, the points start to deviate
from the straight line, with a better scaling of the time complexity in higher dimensions.
High-dimensional experiments of the GaussSieve (80 6 d 6 116) and the HashSieve
(86 6 d 6 96) demonstrated that these algorithms start following the expected trends of
20.42d+o(d) (GaussSieve) and 20.34d+o(d) (HashSieve) as d gets larger [Kle14, MLB15].
In high dimensions we therefore expect the coefficient 0.3366 to be accurate for the
GaussSieve-based HashSieve as well. For more details, see [MLB15].

Space complexities. Figure 10.3e illustrates the experimental space complexities of the
tested algorithms for various dimensions. For the GaussSieve, the total space complexity
is dominated by the memory required to store the list L. In our experiments we stored
each vector coordinate in a register of 4 bytes, and since each vector has d coordinates,
this leads to a total space complexity for the GaussSieve of roughly 4dn bytes. For the
HashSieve the asymptotic space complexity is significantly higher, but recall that in our
hash tables we only store pointers to vectors, which may also be only 4 bytes each. For
the HashSieve, we estimate the total space complexity to be 4dn + 4tn ∼ 4tn bytes,
i.e., roughly a factor t

d
≈ 20.1290d/d higher than the space complexity of the GaussSieve.

Using probing, the memory requirement is further reduced by a significant amount, at
the cost of a small increase in the time complexity (Figure 10.3d).

10.5.5 – High-dimensional extrapolations. As explained at the start of this section,
the experiments in Section 10.5.4 are aimed at verifying the heuristic analysis and at es-
tablishing trends which hold regardless of the amount of optimization of the code, the
quality of preprocessing of the input basis, the amount of parallelization etc. However,
the linear estimates in Figure 10.3 may not be accurate. For instance, the time complexi-
ties of the GaussSieve and HashSieve seem to scale better in higher dimensions; the time
complexities may well be 20.415d+o(d) and 20.337d+o(d) respectively, but the contribution
of the o(d) only starts to fade away for large d. To get a better feeling of the actual time
complexities in high dimensions, one would have to run these algorithms in higher di-

134 CHAPTER 10. HYPERPLANE LOCALITY-SENSITIVE HASHING

mensions. In recent work [MLB15] we showed that the HashSieve can be parallelized in
a similar fashion as the GaussSieve [MTB14]. With better preprocessing, optimized code,
and one level of probing, we were able to solve SVP in dimensions up to 107 in less than
five days on one multicore machine. Based on experiments in dimensions 86 up to 96,
they further estimated the time complexity to lie between 20.32d−15 and 20.33d−16, which
is close to the theoretical estimate 20.3366d+o(d). So although the points in Figure 10.3d
almost seem to lie on a line with a different leading constant, these leading constants
should not be taken for granted for high-dimensional extrapolations; the theoretical es-
timate 20.3366d+o(d) seems more accurate.

Finally, let us try to estimate the highest practical dimension d in which the HashSieve
may be able to solve SVP right now. The current highest dimension that was attacked
using the GaussSieve is d = 116, for which 32GB RAM and about 2 core years were
needed [Kle14]. Assuming the theoretical estimates for the GaussSieve (20.4150d+o(d))
and HashSieve (20.3366d+o(d)) are accurate, and assuming there is a constant overhead
of approximately 22 of the HashSieve compared to the GaussSieve (based on the expo-
nents in Figure 10.3d), we might estimate the time complexities of the GaussSieve and
HashSieve to be G(d) = 20.4150d+C and H(d) = 20.3366d+C+2 respectively for some con-
stant C. To solve SVP in the same dimension d = 116, we therefore expect to use a
factor G(116)/H(116) ≈ 137 less time using the HashSieve, i.e. a total time complex-
ity of only five core days on the same machine. With approximately two core years, we
may further be able to solve SVP in dimension 138 using the HashSieve, which would
place sieving near the very top of the SVP hall of fame [SG15]. This does not take into
account the space complexity though, which at this point may have increased to sev-
eral terabytes. Several levels of probing may significantly reduce the required amount of
RAM, but further experiments have to be conducted to see how practical the HashSieve
is in high dimensions. As in high dimensions the space requirement also becomes an
issue, studying the memory-efficient NV-sieve-based HashSieve (with space complexity
20.2075d+o(d)) may be an interesting topic for future work.

CHAPTER 11

Hypercone locality-sensitive hashing

11.1 — Overview

Context. In the previous chapter we saw that with the hyperplane hash family of
Charikar [Cha02], it is possible to solve SVP heuristically in time 20.3366d+o(d), offering
a substantial improvement over both leveled sieving and the overlattices approach (cf.
Chapter 9). Although Charikar’s random hyperplane method is often considered (one
of) the most practical LSH method(s) known for the angular similarity measure, it is not
clear if this is really the best method to use in high dimensions. For the high-dimensional
regime of large d, there may exist LSH methods which, when combined with sieving, lead
to an even better asymptotic time complexity.

To illustrate this, the best known asymptotic lower bound on the exponent ρ for
locality-sensitive hashing with approximation factor c is ρ > 1/(2c2−1) [AR15b,Dub10].
Under the assumption that all distant vectors are orthogonal (cf. Proposition 10.3), this
leads to c =

√
2 and a lower bound ρ > 1

3 ≈ 0.33, while under the same assumption
hyperplane LSH only achieves an exponent ρ = log2(

3
2) ≈ 0.59, which is significantly

higher. Later work of Andoni–Indyk–Nguyễn–Razenshteyn [AI06, AI08, And09, AINR14,
AR15a] showed that in certain settings this lower bound on ρ can actually be achieved for
e.g. the Euclidean distance, and so a natural question to ask is: could other LSH methods
lead to even faster sieving algorithms in high dimensions?

Hypercone locality-sensitive hashing. In this chapter we answer this question in
the affirmative. With the hypercone or spherical LSH method of [AINR14, AR15a] we
obtain heuristic time and space complexities for solving SVP of 20.2972d+o(d), significantly
improving upon the hyperplane LSH method for sieving1. Tuning the scheme parameters
differently, we obtain the asymptotic space/time trade-off depicted in Figure 11.1. We
further show that a practical variant of this algorithm appears to be very similar to the
2-level sieve of Wang–Liu–Tian–Bi [WLTB11] discussed in Chapter 9.

As we will see later in this chapter, an important open problem that arises from these
results is: can this hash family be made truly practical? Even though the asymptotic
complexity is better than that of the hyperplane LSH-based HashSieve, the order terms

?This chapter is based on results from [LdW15].
1Analysis of the Euclidean LSH family of [AI06, AI08] in the context of sieving has shown that using this

family would result in an asymptotic time complexity of 20.3326d+o(d) and a time/memory trade-off which are
both strictly worse than the results obtained with hypercone LSH (see Figure 11.1). As using Euclidean LSH
does not lead to better asymptotic complexities in high dimensions, nor to a more practical algorithm in low
dimensions, the derivation of this result is omitted from this thesis.

136 CHAPTER 11. HYPERCONE LOCALITY-SENSITIVE HASHING

Tim
e =

Sp
ac

e

●●

●●

20.20 d 20.25 d 20.30 d 20.35 d 20.40 d 20.45 d 20.50 d

20.25 d

20.30 d

20.35 d

20.40 d

20.45 d

20.50 d

Figure 11.1: The space/time trade-offs from the previous two chapters (red), the estimated trade-off for hy-
percone LSH (dashed, cf. Proposition 11.3), the actual trade-off for the hypercone LSH sieve (blue, cf. Theo-
rem 11.4), and the optimized complexities obtained by processing the hash tables sequentially in the Nguyễn–
Vidick sieve (leftmost blue point, cf. Theorem 11.8).

are significantly larger and so it is unlikely that the method proposed in this chapter in
its purest form can compete with the HashSieve from Chapter 10.

Outline. In Section 11.2 we first provide some background on hypercone or spherical
LSH. Section 11.3 describes the result of applying this method to the Nguyễn–Vidick
sieve [NV08], and states the main result regarding the heuristic complexities for solving
SVP with this technique. In Section 11.4 we finally discuss practical implications of these
results, and practical limitations of hypercone LSH.

11.2 — Hypercone locality-sensitive hashing

11.2.1 – Spherical LSH. For the spherical hash family described in [AINR14,AR15a],
we assume that all points in the data set L lie on the unit sphere Sd−1 = {x ∈ Rd : ‖x‖ =
1}. First, we sample u = 2Θ(

√
d) vectors s1, s2, . . . , su ∈ Rd from a d-dimensional

Gaussian distribution with average norm E‖si‖ = 1.2 This equivalently corresponds to
drawing each vector entry from a univariate Gaussian distribution N(0, 1

d
). To each si

2Note that Andoni–Indyk–Nguyễn–Razenshteyn sample vectors with average norm
√
d instead, which

means that everything in our description is scaled by a factor
√
d.

11.2. HYPERCONE LOCALITY-SENSITIVE HASHING 137

we then associate a hash region Hi:

Hi =
{
x ∈ Sd−1 : 〈x, si〉 > 1/

4
√
d
}
\

i−1⋃
j=1

Hj. (i = 1, . . . ,u) (11.1)

Since we assume that x ∈ Sd−1 and with high probability we also have ‖si‖ ≈ 1 in high
dimensions, the condition 〈x, si〉 > 1/ 4

√
d can also be read as ‖x−si‖ 6

√
2−Θ(1/ 4

√
d),

i.e., x lies in the almost-hemisphere defined by si. Finally, the hash of a vector v is given
by (the index of) the region it lies in, i.e. if v ∈ Hi, or equivalently 〈v, si〉 > 1/ 4

√
d and

〈v, sj〉 6 1/ 4
√
d for all j = 1, . . . , i− 1, then h(v) = i.

Note that the parts of Sd−1 that are covered by multiple hash regions are assigned to
the first region Hi that covers this part of the sphere. As a result, the expected size of the
hash regions decreases with i. Also note that the choice of u = 2Θ(

√
d) guarantees that

with high probability, at the end the entire unit sphere is covered by these hash regions
H1,H2, . . . ,Hu; informally, each hash region covers a fraction 2−Θ(

√
d) of the sphere,

so we need 2Θ(
√
d) regions to cover the entire sphere. Finally, taking u = 2Θ(

√
d) also

guarantees that computing a hash can trivially be done in subexponential time 2Θ(
√
d) =

2o(d) by going through each of the hash regionsH1,H2, . . . ,Hu one by one and checking
whether it contains a given point v.

The following result regarding the collision probabilities for spherical LSH is stated
in [AINR14, Lemma 3.3] and [AR15a, Appendix B.1].

Lemma 11.1. Let v,w ∈ Sd−1, and let θ denote the angle between v and w. Then the
spherical hash family H ′ satisfies:

Ph′∈H ′ [h ′(v) = h ′(w)] = exp

[
−

√
d

2
tan2

(
θ

2

)
(1 + o(1))

]
. (11.2)

For θ1 = π
3 and θ2 = π

2 this leads to ρ = ln(p1)
ln(p2)

= tan2(π/6)
tan2(π/4) (1 + o(1)) = 1

3 + o(1),

which asymptotically matches the lower bound of Dubiner [Dub10] of ρ > 1/(2c2 − 1)
for c =

√
2: on the unit sphere, vectors at angle π2 lie at distance

√
2 and vectors at angle

π
3 lie at distance 1. Note that this value ρ is significantly smaller than the exponent ρ for
hyperplane hashing: with θ1 = π

3 and θ2 = π
2 , hyperplane hashing achieves an exponent

ρ = log2(
3
2) ≈ 0.585 (see the proof of Proposition 10.3).

11.2.2 – Hypercone LSH. Whereas spherical LSH as described above only indicates
how to partition the unit sphere in regions, this method can trivially be extended to all
of Rd as follows: given a vector v ∈ Rd, the hypercone hash of a vector v ∈ Rd is
defined as the spherical hash of the normalized vector v/‖v‖ ∈ Sd−1. In other words,
denoting the spherical hash family by H ′ and the hypercone hash family by H, we have
h(v) = h ′(v/‖v‖) for h ∈ H, h ′ ∈ H ′, and v ∈ Rd. As spherical hash regions correspond
to (set-wise differences of) spherical caps, the normalization extends these hash regions
to (set-wise differences of) hypercones.

Since Lemma 11.1 is stated only in terms of angles of vectors, and normalizing vec-
tors does not influence pairwise angles between vectors, the same result of Lemma 11.1
applies to hypercone LSH as well, immediately leading to the following result:

138 CHAPTER 11. HYPERCONE LOCALITY-SENSITIVE HASHING

Lemma 11.2. Let v,w ∈ Rd, and let θ denote the angle between v andw. Then for large
d, the hypercone hash family H satisfies:

Ph∈H[h(v) = h(w)] = exp

[
−

√
d

2
tan2

(
θ

2

)
(1 + o(1))

]
. (11.3)

11.3 — The Nguyễn–Vidick sieve with hypercone LSH

We will now describe the results of applying hypercone LSH to the heuristic sieve
algorithm of Nguyễn and Vidick [NV08]. Note that in the Nguyễn–Vidick sieve, vectors
v and w are almost assumed to lie on the surface of a sphere, as they lie inside a thin
spherical shell with inner radius γR and outer radius R with γ = 1 − o(1). So for the
Nguyễn–Vidick sieve, one could also use spherical instead of hypercone LSH.

11.3.1 – The Nguyễn–Vidick sieve. Recall that initially the Nguyễn–Vidick sieve
starts with a long list L of long lattice vectors (generated using e.g. Klein’s sam-
pler [Kle00]), and it iteratively builds shorter lists of shorter lattice vectors L ′ by applying
a sieve to L, as described in e.g. Algorithm 10.1. After poly(d) applications of the sieve,
one hopes to be left with a list containing a shortest non-zero lattice vector, and the bottle-
neck of the algorithm is applying this sieving procedure poly(d) times. For further details
on this algorithm, see Chapters 8, 9, and 10.

11.3.2 – The (NV-)HyperconeSieve. Algorithm 10.2 in Chapter 10 already describes
quite generally how to apply locality-sensitive hashing to the Nguyễn–Vidick sieve to ob-
tain an asymptotic space/time trade-off, and the only things that change compared to
Chapter 10 by using hypercone LSH are the hash functions that we use, and the parame-
ters k and t that follow from a careful optimization of the costs.

11.3.3 – A practical (NV-)HyperconeSieve variant. Before analyzing how we should
choose the parameters, let us briefly consider how the Nguyễn–Vidick sieve with hyper-
cone LSH could be made slightly more practical. In particular, note that each hash func-
tion requires the use of u = 2Θ(

√
d) random vectors (directions) s1, . . . , su. In total,

this means that the algorithm uses t · k · u = Õ(t) random unit vectors to define hash
regions on the sphere, and all these vectors need to be generated and stored in memory.
Generating so many random vectors from the surface of the unit hypersphere seems un-
necessary, especially considering that we already have a list L containing many vectors
defining random directions in space, and these are already stored in memory.

The above suggests to make the following modification to the algorithm: for building
a single hash function hi,j, instead of sampling s1, . . . , su randomly from the surface
of the sphere, we randomly sample these vectors from our list of lattice vectors L. In
other words, we use the vectors in L to shape the hash regions, rather than sampling
and storing new vectors in memory solely for this purpose. According to Assumption 8.1
the directions of these vectors are just as random as if we sampled the vectors from a
Gaussian, and so using the same heuristic assumption we can justify that this modification
does not drastically alter the behavior of the algorithm. Note that since we need Õ(t)�
Õ(n) random vectors in total (Theorem 11.4 will state exactly how much smaller t is
compared to n), the hash functions hi,j can practically be considered independent for
sufficiently large d.

11.3. THE NGUYEN–VIDICK SIEVE WITH HYPERCONE LSH 139

11.3.4 – Relation with 2-level sieving. Now, note that for a single hash function,
we first use a small set of hash region-defining vectors s1, . . . , su where the radius of
each hash region is approximately (

√
2−o(1))R, and we then apply the NV-sieve in each

of these regions separately, where a vector is considered nearby if it is within a radius of
approximately (1−o(1))R of a center vector. This very closely resembles the ideas behind
the 2-level sieve algorithm discussed in Chapter 9, where a list C1 of outer centers is built
(defining balls of radius γ1R = (

√
2 − o(1))R), and each of the centers of this outer list

contains an inner list Cw2 of center vectors (defining balls of radius γ2R = (1 − o(1))R).
In fact, for t = k = 1, this modified HyperconeSieve is almost identical to the 2-level
sieve with γ1 ≈

√
2 and γ2 ≈ 1.

To understand why hypercone hashing performs differently than 2-level sieving, we
highlight key differences between the two methods:

• The number of hash regions in the HyperconeSieve is subexponential in the dimen-
sion (u = 2Θ(

√
d)), compared to a single exponential number of outer centers in

the 2-level sieve (|C1| = 2Θ(d)). This means that using hypercone LSH, there is no
exponential overhead from using this space partitioning.

• Whereas 2-level sieving only uses one partitioning of the space (t = 1), leading to
an exponential increase in the required number of vectors, with hypercone LSH we
use exponentially many rerandomized partitions of the space (t = 2Θ(d)), so that
the list size does not increase by an exponential factor.

• The analysis of spherical LSH [AINR14,AR15a] (and the closely related analysis of
the celebrated Euclidean LSH family [AI06]) makes crucial use of the fact that the
outer list C1 is ordered to compute collision probabilities, and this same order is
used each time a vector is assigned to a hash region.

For the last point, note that without this order imposed on the hash regions, the proof of
Lemma 11.2 of [AINR14] would not hold, and the performance of spherical/hypercone
LSH might be significantly worse.

11.3.5 – High-dimensional intuition. Now, to obtain a first basic estimate of the po-
tential improvements to the time and space complexities using hypercone LSH, and the
parameters that we will need to use to obtain the optimized complexities, as in the pre-
vious chapter we first note that in high dimensions “almost everything is orthogonal.” In
other words, angles close to 90◦ are more likely to occur between two random vectors un-
der Assumption 8.1 than smaller angles. Under the extreme (and imprecise) assumption
that all angles between pairwise reduced vectors are exactly 90◦, we obtain the following
estimate for the optimized time and space complexities using hypercone LSH.

Proposition 11.3. Assuming that non-reducing vectors are always pairwise orthogonal,
the NV-sieve with hypercone LSH solves SVP in time and space at most (4/3)2d/3+o(d) ≈
20.2767d+o(d), using the following parameters:

k = Θ(
√
d), t = (4/3)d/6+o(d) ≈ 20.0692d+o(d). (11.4)

Under this assumption, we further get the trade-off between the time and space complexities
indicated by the dashed line in Figure 11.1.

Proof. Assuming that all reduced pairs of vectors are orthogonal, we obtain ρ = 1
3 +o(1)

as described in Section 11.2. Since the time complexity is dominated by performing Õ(n)

140 CHAPTER 11. HYPERCONE LOCALITY-SENSITIVE HASHING

nearest-neighbor searches on a list of size n = (4/3)d/2+o(d) ≈ 20.2075d+o(d), the result
follows from Lemma 10.2.

11.3.6 – Solving SVP in time and space 20.2972d+o(d). Not all reduced angles are
actually 90◦, and again we should carefully analyze what is the real probability that a
vectorw whose angle with v is more than 60◦, is found as a candidate due to a collision
in at least one of the hash tables. Proposition 11.3 should only be considered a rough
estimate, and it gives a lower bound on the best time complexity that we may hope to
achieve with this method. Note however that the estimated time complexity is signifi-
cantly better than the similar estimate obtained for the hyperplane LSH-based HashSieve
of Chapter 10, for which the estimated time complexity was 20.3289d+o(d), and that the
estimate in Chapter 10 was also not far off from the final result (compare Proposition 10.3
with Theorem 10.4). Therefore, at this point we may already guess that also the exact
asymptotic time complexity for hypercone LSH will be better than that of the HashSieve.

The following theorem, which follows from this detailed analysis, shows that this is
indeed the case, and it describes exactly what the asymptotic time and space complexities
are when the parameters are fully optimized to minimize the asymptotic time complexity.

Theorem 11.4. The Nguyễn–Vidick sieve with hypercone LSH heuristically solves SVP in
time and space 20.2972d+o(d) using the following parameters:

k = 0.3727
√
d+ o

(√
d
)

, t = 20.0896d+o(d). (11.5)

By varying k and t, we further obtain the trade-off between the time and space complexities
indicated by the solid blue curve in Figure 11.1.

Note again that the estimated parameters and complexities from Proposition 11.3
are not far off from the main result of Theorem 11.4, although the difference between
the dashed and blue curves in Figure 11.1 is bigger than the difference between these
two curves in Figure 10.1. Assuming that reduced vectors are always orthogonal is not
realistic, but it provides a reasonable first estimate of the parameters that we have to use.

To prove Theorem 11.4, we will show how to choose a sequence of parameters
{(kd, td)}d∈N such that for large d, the following holds:

1. The average probability that a reducing vector w collides with v in at least one of
the t hash tables is at least constant in d:

p∗1 = Phi,j∈H[v,w collide | θ(v,w) 6 π
3] > 1 − ε. (0 < ε 6= ε(d)) (11.6)

2. The average probability that a non-reducing vectorw collides with v in at least one
of the t hash tables is exponentially small:

p∗2 = Phi,j∈H[v,w collide | θ(v,w) > π
3] 6 n

−0.5681+o(1). (11.7)

3. The number of hash tables grows as t = n0.4319+o(1).
This would imply that for each search, the number of candidate vectors for comparison
is of the order n · n−0.5681 = n0.4319. Overall we search the list Õ(n) times, so after
substituting n = (4/3)d/2+o(d) this leads to the following time and space complexities:

• Time (hashing): Õ(n · t) = 20.2972d+o(d).
• Time (searching): Õ(n2 · p∗2) = 20.2972d+o(d).
• Space: Õ(n · t) = 20.2972d+o(d).

The next two subsections are dedicated to proving Equations (11.6) and (11.7).

11.3. THE NGUYEN–VIDICK SIEVE WITH HYPERCONE LSH 141

11.3.7 – Nearby vectors collide with constant probability. The following lemma
shows how to choose k (in terms of t) to guarantee that Equation (11.6) holds.

Lemma 11.5. Let ε > 0 and let k = 6(ln t − ln ln(1/ε))/
√
d ≈ (6 ln t)/

√
d. Then the

probability that nearby vectors collide in at least one of the hash tables is at least 1 − ε.

Proof. The probability that a reducing vector w is a candidate vector, given the angle
Θ = Θ(v,w) ∈ (0, π3), is p∗1 = EΘ∈(0,π3) [p

∗(Θ)], where we recall that p∗(θ) = 1 − (1 −

p(θ)k)t and p(θ) = Ph∈H[h(v) = h(w)] is given in Lemma 11.2. Since p∗(Θ) is strictly
decreasing in Θ, we can obtain a lower bound by substituting Θ = π

3 above. Using the
bound 1 − x 6 e−x which holds for all x, and inserting the given expression for k, we
obtain:

p∗1 > p∗
(
π
3

)
= 1 − (1 − exp(ln ln(1

ε
) − ln t))t = 1 −

(
1 − ln(1/ε)

t

)t
> 1 − ε. (11.8)

This completes the proof.

11.3.8 – Distant vectors collide with low probability. We will again make use of
Lemma 10.7, which says that the density at an angle θ is asymptotically proportional
to (sin θ)d. The following lemma relates the collision probability p∗2 of (11.7) to the
parameters k and t. Since Lemma 11.5 relates k to t, this means that only the constant
in the exponent of t ultimately remains to be chosen. Here we again write n = 2cn·d,
t = 2ct·d, and γ1 = 1

2 log2(
4
3) ≈ 0.2075.

Lemma 11.6. Let cn > γ1. Then, if Assumption 8.1 holds, for large d the probability of
bad collisions is bounded by

p∗2 = P{hi,j}⊂H[v,w collide | θ(v,w) > π
3] 6 n

−α+o(1), (11.9)

where α ∈ (0, 1) is defined as

α =
−1
cn

[
max

θ∈(π3 ,π2)

{
log2 sin θ−

(
3 tan2

(
θ
2

)
− 1
)
ct

}]
. (11.10)

Proof. First, if we know the angle θ ∈ (π3 , π2) between two bad vectors, then according
to Lemma 11.2 the probability of a collision in at least one of the hash tables is equal to

p∗(θ) = 1 −

(
1 − exp

[
−
k
√
d

2
tan2

(
θ

2

)
(1 + o(1))

])t
. (11.11)

Letting f(θ) denote the density of angles θ on (π3 , π2), we have

p∗2 = EΘ∈(π3 ,π2) [p
∗(Θ)] =

∫π/2

π/3
f(θ)p∗(θ)dθ. (11.12)

Substituting p∗(θ) and the expression of Lemma 10.7 for f(θ), noting that
∫π/2
π/3 f(θ)dθ ≈∫π/2

0 f(θ)dθ = 1 (i.e., the normalizing constant which we omit is negligible), we get

p∗2 =

∫π/2

π/3
(sin θ)d

[
1 −

(
1 − exp

[
−3 ln t tan2

(
θ

2

)
(1 + o(1))

])t]
dθ. (11.13)

142 CHAPTER 11. HYPERCONE LOCALITY-SENSITIVE HASHING

For convenience, let us writew(θ) = [−3 ln t tan2
(
θ
2

)
(1+o(1)). Note that for θ bounded

away from π
3 we have w(θ)� − ln t so that (1− expw(θ))t ≈ 1− t expw(θ), in which

case we can simplify the expression between square brackets. However, the integration
range includes π3 as well, so to be careful we will split the integration interval at π3 + δ,
where δ = Θ(d−1/2). (Note that any value δ with 1

d
� δ� 1 suffices.)

p∗2 =

∫π/3+δ

π/3
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I1

+

∫π/2

π/3+δ
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I2

. (11.14)

Bounding I1. Using f(θ) 6 f(π3 + δ), p∗(θ) 6 1, and sin(π3 + δ) = 1
2

√
3 [1 +O(δ)]

(which follows from a Taylor expansion of sin x around x = π
3), we obtain

I1 6 poly(d) sind
(π

3
+ δ
)
= poly(d)

(
1
2

√
3
)d

(1 +O(δ))d = 2−γ1d+o(d). (11.15)

Bounding I2. For I2, our choice of δ is sufficient to make the aforementioned approxi-
mation work3. Thus, for I2 we obtain the simplified expression

I2 6 poly(d)
∫π/2

π/3+δ
(sin θ)dt exp

[
−3 ln t tan2

(
θ

2

)
(1 + o(1))

]
dθ (11.16)

6
∫π/2

π/3
2d log2 sinθ−(3 tan2(θ2)−1) log2 t+o(d)dθ. (11.17)

Note that the integrand is exponential in d and that the exponent is a continuous, differ-
entiable function of θ. So the asymptotic behavior of the entire integral I2 is the same as
the asymptotic behavior of the integrand’s maximum value:

log2 I2 6 max
θ∈(π3 ,π2)

{
d log2 sin θ−

(
3 tan2(θ2) − 1

)
log2 t

}
+ o(d). (11.18)

Bounding p∗2 = I1+I2. Combining (11.15) and (11.18), and substituting the expression
for k from Lemma 11.5 (assuming ε > 0 is fixed), we have

log2 p
∗
2

d
6 max

{
−γ1, max

θ∈(π3 ,π2)

{
log2 sin θ− (3 tan2(θ2) − 1)ct

}}
+ o(1). (11.19)

The assumption cn > γ1 and the definition of α < 1 now give

log2 p
∗
2

d
6 −αcn + o(1), (11.20)

which completes the proof.

3By choosing the order terms in k appropriately, the o(1)-term inside w(θ) may be canceled out, in
which case the δ-term dominates. Note that the o(1)-term inw(θ) can be further controlled by the choice of
γ = 1 − o(1).

11.3. THE NGUYEN–VIDICK SIEVE WITH HYPERCONE LSH 143

11.3.9 – Balancing the parameters. Similar to Chapter 10, we can write the overall
time and space complexities as 2ctimed+o(d) and 2cspaced+o(d) respectively, with

ctime = cn + max{ct, (1 − α)cn}, cspace = cn + ct. (11.21)

To balance the time complexities of hashing and searching, so that the overall time com-
plexity is minimized, we solve (1 − α)γ1 = ct numerically for ct to obtain the following
corollary. Here θ∗ denotes the angle θ maximizing the expression in (11.10).

Corollary 11.7. Taking ct ≈ 0.089624 leads to:

θ∗ ≈ 0.425395π, α ≈ 0.568115, ctime ≈ 0.297143, cspace ≈ 0.297143. (11.22)

Thus, using t ≈ 20.089624d hash tables and a hash length of k = Θ(
√
d), the heuristic time

and space complexities of the algorithm are balanced at 20.297143d+o(d).

Note that the dominant angle θ∗ ≈ 0.425395π is reasonably close to 1
2π, which ex-

plains why the final result of Theorem 11.4 is again not far off from the result in Esti-
mate 11.3 based on the assumption that θ∗ = 1

2π.

11.3.10 – Trade-off between the space and time complexities. Finally, ct = 0
leads to the original Nguyễn–Vidick sieve algorithm with a linear space complexity and a
quadratic time complexity, while ct ≈ 0.089624 minimizes the heuristic time complex-
ity at the cost of more space. One can obtain a continuous trade-off between these two
extremes by considering values ct ∈ (0, 0.089624). Numerically evaluating the resulting
complexities for this range of values of ct leads to the blue curve in Figure 11.1.

11.3.11 – Solving SVP in time 20.2972d+o(d) and space 20.2075d+o(d). Finally, note
that the space complexity increases by a factor t and thus increases exponentially com-
pared to the Nguyễn–Vidick sieve. To get rid of this exponential increase in the mem-
ory, instead of storing all hash tables in memory at the same time we could analogously
process the hash tables one by one, as previously described in Algorithm 10.3; we first
build one hash table by adding all preselected center vectors to their corresponding hash
buckets, and for a given target vector we then look for center vectors in the target vector’s
bucket at distance at most γR. This may lead to some short difference vectors being found,
and all the found vectors are added to our list L ′. We then repeat this t = 20.0896n+o(n)

times (each time removing the previous hash table from memory) to finally achieve the
following result.

Theorem 11.8. The space-efficient Nguyễn–Vidick sieve with hypercone LSH with

k = 0.3727
√
d+ o

(√
d
)

, t = 20.0896d+o(d), (11.23)

and γ → 1 heuristically solves SVP in time 20.2972d+o(d) and space 20.2075d+o(d). These
complexities are indicated by the leftmost blue point in Figure 11.1.

To put the exponent into context, taking into account the list size n ≈ 20.2075d+o(d): a
naive search would take time Õ(n2), leveled sieving and the overlattices approach reduce
the cost to Õ(n1.82), hyperplane LSH reduces the cost to Õ(n1.62), and hypercone LSH
reduces it to Õ(n1.43).

144 CHAPTER 11. HYPERCONE LOCALITY-SENSITIVE HASHING

11.4 — The GaussSieve with hypercone LSH

11.4.1 – The GaussSieve algorithm. As described in Chapters 8 and 10, a more
practical algorithm for solving the shortest vector problem in high dimensions is the
GaussSieve algorithm of Micciancio and Voulgaris [MV10b]. Its asymptotic complexi-
ties are conjectured to be the same as those of the Nguyễn–Vidick sieve, but the constants
are much smaller, and the algorithm is significantly more memory-efficient; the algorithm
only adds new vectors to the system when it sees that the current set of vectors does not
suffice to find a shortest vector. This is quite different from the Nguyễn–Vidick sieve,
where many center vectors are discarded in each iteration of the sieve, and intuitively
more memory is used than needed.

11.4.2 – The HyperconeSieve algorithm. For the GaussSieve, it is crucial that we
can extend the hash functions to all of Rd, as sampled vectors and list vectors may be sig-
nificantly different in length. For the GaussSieve it is therefore impossible to use spherical
LSH directly, but applying hypercone LSH is straightforward with the previous chapter on
hyperplane hashing in mind. As Algorithm 10.5 describes how to apply any LSH method
to the GaussSieve, we do not repeat the algorithm description here, and just mention
that the HyperconeSieve can be constructed from the GaussSieve by replacing hyper-
plane LSH by hypercone LSH in Algorithm 10.5, and using the parameters described in
Theorem 11.4.

11.4.3 – High-dimensional estimates. Theoretically, Theorem 11.4 and Figure 11.1
show that in high dimensions, hypercone LSH leads to even bigger speed-ups and better
space complexities for sieving than the hyperplane LSH method considered in Chapter 10.
With heuristic time and space complexities of less than 20.2972d+o(d) < 23d/10+o(d), one
might conclude that in high dimensions, to achieve e.g. 3x bits of security for a lattice-
based cryptographic primitive relying on the hardness of exact SVP, one should use a
lattice of dimension at least 10x. As most cryptographic schemes are broken even if a
“somewhat short” lattice vector is found (which by using BKZ [Sch87,SE94] means that
we can significantly reduce the dimension in which we need to run our SVP algorithm),
and the time complexity of sieving with hypercone LSH is slightly lower than 23d/10+o(d),
one should probably use lattices of dimension much higher than 10k to guarantee 3k bits
of security. So if we simply look at the leading term in the exponent, various param-
eter choices relying on the estimates of e.g. Chen and Nguyễn [CN11] (solving SVP in
dimension 200 takes time approximately 2111) would be too aggressive.

Although the leading term 0.2972d in the exponent dominates the complexity in high
dimensions, this does not tell the whole story as o(d)-terms in the exponent are not
negligible for moderate d. While for the hyperplane LSH method of Charikar [Cha02]
considered in Chapter 10, hash values can be computed in linear time, with hypercone
LSH even the cost of computing a single hash value is already sub-exponential (but super-
polynomial) in d. So although the (NV-)HyperconeSieve is asymptotically superior to all
previous SVP algorithms, it is not clear whether it will outperform the hyperplane LSH-
based HashSieve algorithm of Chapter 10 for any feasible dimension d, let alone whether
it will outperform enumeration-based SVP solvers. To really improve upon other SVP
algorithms, one would have to find an LSH method which is (i) efficient to compute (i.e.
polynomial time for computing a hash value) and (ii) asymptotically (almost) as good as
the optimal spherical and hypercone LSH families.

CHAPTER 12

Cross-polytope locality-sensitive hashing

12.1 — Overview

Context. Chapters 10 and 11 described how existing LSH techniques can be used
to obtain considerable speed-ups for solving SVP on arbitrary lattices with sieving. The
hyperplane LSH method of Charikar [Cha02] discussed in Chapter 10 is simple to an-
alyze and implement but asymptotically suboptimal, while the spherical or hypercone
LSH method of Andoni–Indyk–Nguyễn–Razenshteyn [AINR14, AR15a] of Chapter 11 is
asymptotically optimal within the LSH framework, but may be less practical due to the
large cost of computing hash values. Within the framework of combining LSH with siev-
ing, the best we may hope for is finding a method achieving the best of both worlds,
i.e., hash functions with a computational cost comparable to Charikar’s method, and an
asymptotic performance comparable to hypercone LSH. If such a hash family would fur-
ther be able to exploit the additional structure in certain lattices used in cryptography
(such as cyclic or negacyclic lattices [GGH13, HPS98, HHGPW10, LPR10, SS11]) to ob-
tain additional speed-ups, that would be ideal. As such a method does not seem to exist
in the literature, the first question to ask is: is it possible to improve upon current LSH
techniques, to get these desired properties? And can such techniques be applied to lattice
sieving?

Cross-polytope locality-sensitive hashing. In this chapter we show that it is indeed
possible to improve upon hypercone hashing in practice, by analyzing a hash family based
on cross-polytopes. This family of hash functions was previously proposed by Terasawa
and Tanaka [TT07], who already showed that this hash family performs well in practice
(and better than e.g. hyperplane hashing), but they did not give any provable bounds on
the large-d asymptotics of the collision probabilities or on ρ. We study the asymptotics of
this hash family, and show that this family (i) achieves the exact same query exponents
ρ for the angular distance as hypercone hashing (see Figure 12.1), and (ii) has a poly-
nomial (quadratic or even sub-quadratic in d) complexity for evaluating a single hash
function. This means that we obtain the same asymptotic exponents for solving SVP as
with hypercone LSH, with a practical efficiency comparable to hyperplane LSH.

Cyclic (ideal) lattices. Besides the subexponential speed-up for solving SVP on gen-
eral lattices compared to hypercone LSH (and exponential speed-up over hyperplane
LSH), we show that this hash family can also be used to solve SVP on cyclic (ideal) lat-
tices even faster. The cyclic structure of the base hash function allows us to potentially

?This chapter is based on results from [AIL+15,BL15a].

146 CHAPTER 12. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING

Tim
e =

Sp
ac

e

●●

●●

20.20 d 20.25 d 20.30 d 20.35 d 20.40 d 20.45 d 20.50 d

20.25 d

20.30 d

20.35 d

20.40 d

20.45 d

20.50 d

Figure 12.1: The space/time trade-offs described in Chapters 9 and 10 (red), the estimated trade-off for the
GaussSieve-based hypercone and cross-polytope LSH sieves (blue, cf. Theorems 11.4 and 12.2), and the opti-
mized complexities obtained by processing the hash tables sequentially in the Nguyễn–Vidick sieve for hyper-
cone and cross-polytope LSH (leftmost blue point, see Theorems 11.8 and 12.2).

obtain a factor d speed-up and decrease in the memory complexity for cyclic lattices. For
this however we also need the rerandomized hash functions to satisfy the same cyclic
property, which we will show implies that the random (pseudo-)rotation matrices need
to be circulant. We show that this extra condition on the rotation matrices does not seem
to affect the quality of the rotations significantly, and using such circulant matrices we
thus obtain the linear improvement in the time and memory complexity for certain cyclic
lattices. Experiments validate these results, and show that indeed cross-polytope LSH
may be a significant improvement over both hyperplane LSH and hypercone LSH.

Outline. In Section 12.2 we first describe cross-polytope LSH, and we analyze the
asymptotics of this hash family, showing that asymptotically it performs equally well as
hypercone LSH, but with a computational efficiency comparable to hyperplane LSH. Sec-
tion 12.3 describes the theoretical results of applying this method to the Nguyễn–Vidick
sieve [NV08], while Section 12.4 describes the results of applying the same techniques
to the GaussSieve of Micciancio and Voulgaris [MV10b]. Section 12.5 finally describes
how to reduce both the time and space complexity for running SVP on cyclic lattices by
a factor O(d), and we illustrate these ideas by applying this algorithm to cyclic lattices
appearing in the cryptanalysis of lattice-based cryptography.

12.2. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING 147

12.2 — Cross-polytope locality-sensitive hashing

Let us first describe the cross-polytope LSH method first outlined by Terasawa and
Tanaka [TT07], and how it performs in theory and in practice. To construct hash func-
tions, we make use of the vertices of cross-polytopes. The d-dimensional cross-polytope is
defined as the `1-unit sphere in Rd, with vertices (corners) given by ±ei for i = 1, . . . ,d
where ei is the ith unit vector in Rd. The base hash function associated to the cross-
polytope then maps a vector x to the nearest vertex to x, i.e., if x = 2e1 − 3e2, then
h(x) = −e2. Note that equivalently

h(x) = sgn(xi∗) · ei∗ (i∗ = argmaxi∈{1,...,d} |xi|) (12.1)

where sgn(α) = 1 if α > 0, and sgn(α) = −1 otherwise, represents the sign of α.
The above only defines one hash function h. To obtain a family of hash functions H,

we randomly rotate the cross-polytope in space, and then apply the base hash function
h. Equivalently, we first apply the (inverse) rotation to the data set, and then apply the
base hash function to this rotated data set. Formally, forA ∈ Rd×d a random matrix with
i.i.d. Gaussian entries with variance 1

d
, we define the hash function hA associated to this

choice of A by hA(x) = h(Ax), where h is the base hash function defined above:

H =
{
hA : hA(x) = h(Ax), A = (ai,j), ai,j ∼ N(0, 1

d
)
}

. (12.2)

Although A can intuitively be understood to be a rotation matrix, A does not necessarily
define a perfect rotation, as ATA may not be exactly equal to the d× d identity matrix.
We use Gaussians rather than perfect rotation matrices both for the analysis and for im-
plementing the generation of these matrices in practice, although using perfect rotation
matrices A should lead to similar asymptotic results.

12.2.1 – Collision probabilities. The main result regarding this hash function family
H is the following theorem.

Theorem 12.1. Let θ = θ(v,w) denote the angle between v andw. Then, for large d,

PhA∈H [hA(v) = hA(w)] = exp
[
−(lnd) tan2

(
θ

2

)
(1 + o(1))

]
. (12.3)

Sketch of the proof. We will sketch the proof below, where instead of the cross-polytope
hash function h(x) = ± argmaxi |xi| we consider the simplex hash function h(x) =
argmaxi xi also described in [TT07]. For a full, complete proof for the cross-polytope
hash functions, we refer the reader to [AIL+15].

Without loss of generality, let v,w ∈ Rd be normalized vectors of norm 1; as the
hash functions are scale-invariant, we can always normalize the vectors before applying
a hash function hA to it. Let v and w have mutual angle θ, and again w.l.o.g. suppose
that v = (1, 0, . . . , 0), andw = (cos θ, sin θ, 0, . . . , 0), so that θ(v,w) = θ.

Let A = (a1|a2| . . . |ad) be a random Gaussian matrix. Then Av = a1 and Aw =
a1 cos θ + a2 sin θ. Let us further suppose that h(v) = ei∗ for some index i∗. We will
inspect the probability that under these circumstances, we also have h(w) = ei∗ .

First, note that i∗ = argmaxi(Av)i = argmaxi a1,i implies that a1,i∗ is the maximum
over the d normally distributed random variables a1,1, . . . ,a1,d ∼ N(0, 1

d
). For large d,

148 CHAPTER 12. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING

the distribution of
√
d ·a1,i∗ converges to the extreme value distribution with parameters

αd =
√

2 lnd (1 + o(1)) and βd = (1 + o(1))/
√

2 lnd; see e.g. [ABN08, Theorem 8.3.4
and Example 8.3.4]. This distribution has mean αd + γEβd ≈ αd = Θ(

√
logd), where

γE ≈ 0.577 is the Euler-Mascheroni constant, and variance 6β2
d/π

2 = Θ(1/ logd). Due
to the small variance, with high probability a1,i∗ will be very close to its mean1. For large
d, this implies that

a1,i∗ =

√
2 lnd
d

(1 + o(1)). (12.4)

Furthermore, by similar reasoning forw we have h(w) = ei∗ if and only if

(Aw)i∗ = a1,i∗ cos θ+ a2,i∗ sin θ =

√
2 lnd
d

(1 + o(1)). (12.5)

Intuitively, if (Aw)i∗ is significantly smaller than the right hand side, then there will be
another index i ′ with (Aw)i′ > (Aw)i∗ . On the other hand, with high probability there
are no indices i with significantly larger values than the right hand side.

Using (12.4), the condition on (Aw)i∗ can be rewritten to a condition on a2,i∗ as:

a2,i∗ =

√
2 lnd
d
· 1 − cos θ

sin θ
(1 + o(1)) =

√
2 lnd
d
· tan

(
θ

2

)
(1 + o(1)). (12.6)

Recall that i∗ is a fixed number between 1 and d indicating the position of the maximum
of ai, and this number i∗ is independent of the vector a2. As a2,i∗ is sampled from a
normal distribution N(0, 1

d
), we can estimate the probability of the above event using

standard tail bounds on the normal distribution (see e.g. [AR15a, Lemma B.1]) to obtain

P

[
a2,i∗ =

√
2 lnd
d
· tan

(
θ

2

)
(1 + o(1))

]
=

exp
[
− lnd tan2(θ2)(1 + o(1))

]
√

4π lnd · tan(θ2)(1 + o(1))
. (12.7)

Eliminating terms that disappear in the o(1) in the exponent in the numerator, we get
the claim from the theorem.

12.2.2 – Computational complexity. For the base cross-polytope hash function h,
there is an obvious algorithm for computing h(x): find the maximum entry of x, and
include its sign in the hash value. This base hash function can therefore be computed
in time O(d). For the rerandomized hash functions we first have to multiply x by a
random rotation matrix, the cost of which is (at most) quadratic in d. Therefore the total
cost of computing one hash value is O(d2), i.e. significantly less than for the hypercone
hash family considered in the previous chapter with hash cost 2Θ(

√
d). Using structured

matricesAwith a sufficient amount of randomness (using e.g. Hadamard transformations
as described in [AIL+15]), the computational complexity of computing a hash value may
be further reduced to O(d logd).

1This argument is not quite formal, as one has to take into account the actual distribution function as well,
for in case the distribution has large tails. As mentioned before, the corresponding paper [AIL+15] contains a
more detailed and rigorous proof.

12.3. THE NGUYEN–VIDICK SIEVE WITH CROSS-POLYTOPE LSH 149

12.3 — The Nguyễn–Vidick sieve with cross-polytope LSH

12.3.1 – Solving SVP in time and space 20.2972d+o(d). As in the previous two chap-
ters, applying the technique of cross-polytope locality-sensitive hashing can be done simi-
larly as in Algorithm 10.2. Note that the asymptotic performance of a hash family mainly
depends on the exponent ρ, which in this case for given angles θ1, θ2 is given by

ρ =
logp(θ1)

logp(θ2)
=

−(lnd) tan2
(
θ1
2

)
(1 + o(1))

−(lnd) tan2
(
θ2
2

)
(1 + o(1))

=
tan2

(
θ1
2

)
tan2

(
θ2
2

) (1 + o(1)) (12.8)

This is exactly the same exponent as for the hypercone hash family considered in the
previous chapter, since the dependence of the asymptotic collision probabilities on the
parameters θ1, θ2 is exactly the same. In other words, the parameter ρ(θ1, θ2) for given
θ1, θ2 is asymptotically equivalent to the exponent ρ(θ1, θ2) for hypercone LSH, regard-
less of the values of θ1, θ2. As a result, the asymptotic performance of sieving with either
LSH technique is exactly the same and we obtain the following result.

Theorem 12.2. The Nguyễn–Vidick sieve with cross-polytope LSH heuristically solves SVP
in time and space 20.2972d+o(d) using the following parameters:

k =
0.2689d

log2 d
+ o

(
d

logd

)
, t = 20.0896d+o(d). (12.9)

By varying k and t, we further obtain the trade-off between the time and space complexities
indicated by the solid blue curve in Figure 12.1.

Note that the parameter k has changed compared to hypercone LSH. To find the
new value of k, observe that to guarantee that nearby vectors are found with constant
probability we need to choose k such that p(π3)

k ∼ 1
t
. After rewriting, this becomes

k ∼ 3ct · (d
log2 d

) + o(d
logd), which for ct ≈ 0.0896 leads to the given leading constant.

Although almost linear in d, the value of k is very small in practice; looking at the leading
term k0 = 0.27d

log2 d
, for d = 64 we have k0 < 3 and for d = 128 we have k0 < 5.

12.3.2 – Solving SVP in time 20.2972d+o(d) and space 20.2075d+o(d). As described in
the previous two chapters, for the Nguyễn–Vidick sieve we can get rid of the exponential
increase in the memory by processing the hash tables sequentially: see Algorithm 10.3.
This leads to the following result.

Theorem 12.3. The space-efficient Nguyễn–Vidick sieve with cross-polytope LSH with

k =
0.2689d

log2 d
+ o

(
d

logd

)
, t = 20.0896d+o(d), (12.10)

and γ → 1 heuristically solves SVP in time 20.2972d+o(d) and space 20.2075d+o(d). These
complexities are indicated by the leftmost blue point in Figure 12.1.

We stress that the trade-off curve illustrated in Figure 12.1 is in that sense not relevant
for the Nguyễn–Vidick sieve, but it is relevant for the GaussSieve, for which we cannot
get the strict speed-up described in Theorem 12.3.

150 CHAPTER 12. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING

12.4 — The GaussSieve with cross-polytope LSH

12.4.1 – The CrossPolytopeSieve. In practice, the GaussSieve achieves a much bet-
ter time complexity than the Nguyễn–Vidick sieve, and similar to the previous chap-
ters we can apply cross-polytope LSH to the GaussSieve as well, as illustrated in Algo-
rithm 10.5. For this algorithm we expect to achieve a similar asymptotic performance
as the Nguyễn–Vidick sieve, as described in Theorem 12.2. Although this already offers
a substantial (albeit subexponential) improvement over hypercone LSH, and an expo-
nential improvement over sieving with hyperplane LSH and other sieve algorithms, to
make the resulting algorithm truly practical we would like to further reduce the worst-
case quadratic cost of computing hashes. Note that in hyperplane LSH the cost of com-
puting one hash function is linear, so that the total cost a k-combined hash function is
k · Θ(d) = Θ(d2), while for cross-polytope LSH the cost per function is quadratic, for a
total cost of k ·Θ(d2) = Θ(d3/ logn) for each composed hash function.

Theoretically, to compute hashes we first multiply a target vector v by a fully random
Gaussian matrix A where each entry ai,j is drawn from the same Gaussian distribution,
and then look for the largest coordinate of r = Av; the index of the largest coordinate
of r (together with the sign of this coordinate) will be the hash value. As also described
in [Ach01,Laa15c,LHC06], in practice it may be possible to reduce the amount of entropy
in the hash functions (the “randomness”) without significantly affecting the performance
of the scheme. As long as the amount of entropy is high enough that we can build suf-
ficiently many random, independent hash functions, the algorithm will still work fine.
Some possibilities to reduce the complexity of computing hashes in practice are:

• Use low-precision floating-point matrices A.
• Use sparse random projection matrices.
• Use structured matrices that allow for fast matrix-vector multiplication.

Using structured matrices that allow for e.g. the use of Fast Fourier Transforms or Fast
Hadamard Transforms (see [AIL+15] for details), the cost of computing matrix-vector
multiplications may be reduced from Θ(d2) to Θ(d logd). In that case, the cost per
combined hash function k·Θ(d logd) = Θ(d2) is asymptotically equivalent to hyperplane
LSH. In other words, we get the best of both worlds: the same cost for computing hashes
as hyperplane LSH, and the same asymptotic performance as hypercone LSH.

12.4.2 – Relation with hyperplane hashing. To put the hash family H into context,
recall that the hyperplane hash family of Charikar [Cha02] used in the HashSieve (Chap-
ter 10) is defined as follows: one samples a random vector a from a Gaussian distribu-
tion, and assigns a hash value to a vector v based on whether the inner product 〈v,a〉
is positive or not. Equivalently, we multiply v by a random Gaussian matrix A to get an
output vector r = Av, and we check whether r lies closer to +e1 or closer to −e1, where
e1 = (1, 0, . . . , 0). Note that only the first row of A influences the hash values.

Formulating the hyperplane hash family this way, we can clearly see similarities with
cross-polytope hashing, where all unit vectors ±ei are compared to the output vector
r = Av to see which is closest. This suggests a natural generalization of both hyperplane
and cross-polytope hashing as follows, called partial cross-polytope LSH [AIL+15]:

h(m)(x) = sgn(xi∗) · ei∗ . (i∗ = argmaxi∈{1,...,m} |xi|) (12.11)

Then a hash family can again be constructed by multiplying a vector by a random Gaussian

12.4. THE GAUSSSIEVE WITH CROSS-POLYTOPE LSH 151

matrix A before taking the hash value. Setting m = 1 then exactly corresponds to the
hyperplane hashing technique of Charikar, while form = d we obtain the cross-polytope
LSH family of (12.1). Note that this generalization with arbitrarym and multiplying with
a random Gaussian matrix A ∈ Rd×d can also be viewed as first applying a dimension-
reducing random projection A ′ ∈ Rm×d (consisting of the first m rows of A) onto a
low-dimensional subspace of dimensionm, and then using the standard full-dimensional
cross-polytope hash function in this m-dimensional space.

12.4.3 – Reducing the memory with probing. The idea of probing, where various
hash buckets in each hash table are traversed and checked for nearby vectors to our
target vector v (rather than only the bucket labeled h(v)), can also be applied to the
cross-polytope hashing and may lead to a significant reduction in the number of hash
tables [LJW+07, Pan06, SLH12]. For a given vector v, the highest-quality bucket (the
bucket most likely to contain vectors for reductions) is the one labeled h(v), containing
other vectors which also have the same index of the largest coordinate. It is not hard to see
that the second-best bucket for reductions with v is exactly that bucket corresponding to
the second-largest absolute coordinate of v. For instance, if v = (3,−1,−8,−5, 11) then
the vectors whose largest absolute coordinate is the fifth coordinate are most likely to be
nearby v, and the next best option to check is those vectors whose largest coordinate in
absolute value is the third coordinate, and whose third coordinate is negative. Therefore,
we may consider the indices i ∈ {1, . . . ,d} sorted by the absolute values of (Av)i as our
probing sequence or “ranking” for v for a single hash function hA. The further we are in
the sequence, the less likely it is that nearby vectors have these hash values.2

The remaining question is how to combine multiple cross-polytope rankings when we
have more than one hash function in one hash table. Consider two points v = e1 and
w = e1 cos θ + e2 sin θ at angle θ. Let A(i) denote the Gaussian matrix of the i-th hash
function hi = hA(i) , and let r(i) = A(i)v be the randomly rotated versions of point v.
Given r(i), we are interested in the probability ofw hashing to a certain combination of
the individual cross-polytope rankings. More formally, let R(i)αi be the index of the αi-th
largest element of r(i), where α ∈ {1, . . . ,d}k specifies the alternative probing location.
Then we would like to compute

P
A(1),...,A(k)

[
hA(i)(w) = R(i)αi for all i ∈ {1, . . . , k}

∣∣∣ A(i)v = r(i)
]

(12.12)

=

k∏
i=1

P
A(i)

[
argmaxj

{
(A(i)e1 cos θ+A(i)e2 sin θ)j

}
= R(i)αi

∣∣∣A(i)e1 = r(i)
]

. (12.13)

If we knew this probability for all α ∈ {1, . . . ,d}k, we could sort the k-dimensional prob-
ing locations by their probabilities. To approximate the individual terms in the latter
product efficiently for a single value of i (omitting superscripts), w.l.o.g. we permute the

2In order to simplify notation, we again consider the simplex hash family rather than the cross-polytope
family, where both the standard basis vector +ei and its opposite −ei are mapped to the same hash value. It
is easy to extend the multiprobe scheme defined here to cross-polytope LSH; see e.g. [AIL+15].

152 CHAPTER 12. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING

rows of A so that Ri = i and get

P
A∼N(0,1)d×d

[
argmaxj

{
(r cos θ+Ae2 sin θ)j

}
= αi

∣∣∣ Ae1 = r
]

(12.14)

= P
y∼N(0,1)d

[
argmaxj

{
(r+ y tan θ)j

}
= αi

]
. (12.15)

The latter expression is the Gaussian measure of the set S = {y ∈ Rd : argmaxj |(r +
y tan θ)j| = αi}. We can estimate the measure of S by its distance to the origin
(see [AIL+15, Appendix A]). Then the probability of probing location R(i)αi is proportional
to exp(−‖yr,αi‖2), where yr,αi is the shortest vector y ′ such that argmaxj{(r + y)j} =
αi.3 Note that for computational performance and simplicity, we can make a further ap-
proximation and use yr,αi = (maxj |rj| − |rαi |) · eαi , i.e., we only consider modifying a
single coordinate to reach the set S.

Once we have estimated the probabilities for each αi ∈ {1, . . . ,d} in one layer i, we
incrementally construct the probing sequence using a binary heap, similar to the approach
in [LJW+07]. For a probing sequence of length m, the resulting algorithm has running
time Õ(t+m logm).

12.4.4 – Experimental results. To illustrate the practicability of sieving with cross-
polytope LSH, as well as to verify the asymptotic behavior, we performed experiments
with the GaussSieve with cross-polytope LSH in dimensions 40–80, with parameters as
shown in Figure 12.2a. Already in mid-size dimensions (d > 50), we observe that the
costs are similar to the asymptotic estimates for small choices of k. In low dimensions,
we observe that values of k slightly smaller than the theoretical leading term may work
better than choosing k larger (rounding up). In the worst case, choosing k too small
means following the time/space trade-off curve of Figure 12.1 to the left and up, i.e.,
using more time at the cost of less space. Choosing k too large may force us to travel
further to the right and upwards in Figure 12.1, i.e., using more time and more space.

Overall, in these experiments we already observe that the GaussSieve with cross-
polytope LSH has a distinguished lower increase in the time complexity in practice com-
pared to the traditional GaussSieve and the hyperplane LSH-based, GaussSieve-based
HashSieve of Chapter 10, and the crossover points between both methods seems to lie in
moderate dimensions. As the gap between the CrossPolytopeSieve and other algorithms
will only increase as d increases, this clearly highlights the potential of the CrossPolytope-
Sieve on arbitrary lattices.

12.5 — The ideal GaussSieve with cross-polytope LSH

While the CrossPolytopeSieve is very capable of solving the shortest vector problem on
arbitrary lattices, it was already shown in various papers [BNvdP14,IKMT14,Sch13] that
for certain ideal lattices it is possible to obtain substantial polynomial speed-ups for siev-
ing in practice, which may make sieving even more competitive with e.g. enumeration-
based SVP solvers. As ideal lattices are commonly used in lattice cryptography, and our

3Note that the term tanθ has disappeared from the expression. Intuitively it should be clear that the
optimal probing sequence does not depend on the angle between two vectors: if we want to find vectors at
angle at most 30◦, that will not lead to a difference sequence of buckets to check than if we want to find vectors
at angle at most 80◦.

12.5. THE IDEAL GAUSSSIEVE WITH CROSS-POLYTOPE LSH 153

Dimension (d) 40 45 50 55 60 65 70 75 80 85 90 95 100

Hash length (k) 2.0 2.2 2.4 2.6 2.7 2.9 3.1 3.2 3.4 3.6 3.7 3.9 4.1
Hash tables (t) 12 16 22 30 42 57 77 105 144 196 268 365 498

(a) Parameters k, t in the CrossPolytopeSieve (the values of Theorem 12.2, with t rounded to the
nearest integer) without taking into account the possible effects of probing. Note that although k is
quasi-linear in d, it only increases by 2 as d increases from 40 to 100.

×

×

×

×

×

×

×

× ×

●

●

●

●

●

●

●

●

●

□

□
□

□

□

□

□

□

□

✶
✶

✶
✶

✶

×
●

□
✶

40 50 60 70 80
106

107

108

109

1010

1011

1012

(b) CrossPolytopeSieve computations

×××××
××××

××××
××××

××××
×××

×××××
××××

××

●●●
●
●●●

●
●●●

●●
●●●

●
●●●

●●
●●●

●
●●●

●●
●●●

●
●●●

●●
●

□
□

□
□

□
□

□
□

□

✶

✶
✶

✶
✶

×
●

□
✶

40 50 60 70 80
10

100

1000

104

105

106

107

(c) List sizes

××××
×××

××××
×××

××××
××××

××××
××××

×××
××

●●
●●

●●
●●

●●
●●

●
●●

●●
●●

●●
●
●●

●●
●●

●●
●
●●

●●
●●

●●
●
●

□

□
□

□
□

□
□

□
□

✶

✶
✶

✶

✶

×
●

□
✶

40 50 60 70 80
104

105

106

107

108

109

1010

(d) Space complexities

□

□
□

□

□

□

□

□

□

△

△
△

△

▽▽

□
△

▽

40 50 60 70 80
105

106

107

108

109

1010

1011

(e) Ideal vs. non-ideal lattices

Figure 12.2: Experimental data obtained from applying the GaussSieve, HashSieve, and CrossPolytopeSieve
(CPSieve) without probing to LLL-reduced random lattice bases from the SVP challenge [SG15]. Markers indi-
cate experimental data, lines and line labels represent least-squares fits of the data. Note that using k = 3 in
low dimensions leads to a big increase in the list size, as one would have to use a very large number of hash
tables to compensate for the fine-grained selection of vectors for comparison, which in turn would lead to a high
cost of computing hashes. For smaller t and k = 3, this leads to missing nearby vectors quite often, increasing
the list size, the memory, and the time till termination. The last figure shows the speed-ups obtained for cyclic
lattices such as NTRU lattices and power-of-two cyclotomic lattices, where k is fixed at k = 2. As there is only
one power of two between 40 and 80, we only have one data point for cyclotomic lattices.

154 CHAPTER 12. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING

main goal is to estimate the complexity of SVP on lattices that are actually used in lattice
cryptography, it is important to know if the CrossPolytopeSieve can be sped up on ideal
lattices as well. We will show that this is indeed the case, using similar techniques as
in [BNvdP14, IKMT14, Sch13] but where we need to do some extra work to make sure
these speed-ups apply here as well.

Ideal lattices are defined in terms of ideals of polynomial rings. Given a ring R =
Z[X]/(g) where g ∈ Z[X] is a degree-dmonic polynomial, we can represent a polynomial
v(X) =

∑d
i=1 viX

i−1 in this ring by a vector v = (v1, . . . , vd). Then, given a set of
generators b1, . . . ,bk ∈ R, we define the ideal I = 〈b1, . . . ,bk〉 by the properties (i)
b1, . . . ,bk ∈ I; (ii) if a,b ∈ I then also λa+µb ∈ I for scalars λ,µ ∈ Z; and (iii) if a ∈ R
and b ∈ I then a · b ∈ I. Note that when these polynomials are translated to vectors, the
first property corresponds exactly to the property of a lattice, while the second property
makes this an ideal lattice. In terms of lattices, the second property can equivalently be
written as:

(v1, . . . , vd) ∈ L ⇔ (w1, . . . ,wd) ∈ L, where w ≡ X · v mod g. (12.16)

Below we will restrict our attention to two specific choices of g as follows:

Cyclic lattices. If g(X) = Xd − 1 and v = (v1, . . . , vd), then w ≡ X · v implies that
w = (vd, v1, . . . , vd−1), i.e. multiplying a polynomial in the ring by X corresponds
to a right-shift (with carry) of the corresponding vector. So in a cyclic lattice, a
cyclic shift of a lattice vector is also always in the lattice.

Negacyclic lattices. For the case g(X) = Xd + 1, multiplying a polynomial by X in the
ring corresponds to a right-shift with carry, but in this case an extra minus sign
appears with the carry: w ≡ X · v implies thatw = (−vd, v1, . . . , vd−1).

Whereas the above descriptions of cyclic and negacyclic lattices are quite general, below
we list two instances of these lattices that appear in lattice-based cryptography.

NTRU lattices. Cyclic lattices most notably appear in the cryptanalysis of the NTRU cryp-
tosystem [HPS98,HHGPW10], where the polynomial ring is R = Zq[X]/(Xd

′
− 1)

for d ′,q prime. Due to the modular ring, the corresponding lattice is not quite
cyclic but rather “block-cyclic”. The NTRU lattice is formed by the d = 2d ′ basis
vectors bi = (q · ei‖0) for i = 1, . . . ,d ′ and bd′+i = (hi‖ei) for i = 1, . . . ,d ′,
where ei corresponds to the ith unit vector, and hi corresponds to the ith cyclic
shift of the public key h generated from the private key f,g (see [HPS98] for de-
tails). In this case, if v = (v1‖v2) ∈ L, then also cyclically shifting both v1 and v2

to the right or left leads to a lattice vector. Finding a shortest non-zero vector in this
lattice corresponds to finding the secret key (g‖f) and breaking the cryptosystem,
so clearly the complexity of SVP in these lattices is of practical interest.

Power-of-two cyclotomic lattices. Negacyclic lattices commonly appear in lattice cryp-
tography, where d = 2k is a power of 2 so that, among others, g is irre-
ducible. The 128-dimensional ideal lattice attacked by Ishiguro–Kiyomoto–Miyake–
Takagi [IKMT14] and Bos–Naehrig–van de Pol [BNvdP14] from the ideal lattice
challenge [PS15] also belongs to this class of lattices. Lattices of this form previ-
ously appeared in the context of lattice-based cryptography in e.g. [GGH13,LPR10,
SS11].

12.5. THE IDEAL GAUSSSIEVE WITH CROSS-POLYTOPE LSH 155

12.5.1 – The ideal GaussSieve. For the cyclic and negacyclic ideal lattices mentioned
above, cyclic shifts of a vector are also in the lattice (modulo minus signs) and have the
same Euclidean norm. As first described by Schneider [Sch13], this property can be used
in the GaussSieve as follows. First, note that any vector v can be viewed as representing
d vectors, namely its d shifted versions v, v(1), v(2), . . . , v(d−1), where we write x(s) =
(xd−s+1, . . . , xd, x1, . . . , xd−s) for the sth cyclic right-shift of x = (x1, . . . , xd). Similarly,
another vectorw represents d different lattice vectorsw,w(1),w(2), . . . ,w(d−1).

Non-ideal lattices. In the standard GaussSieve, we would treat these 2d shifts of v and
w as unrelated different vectors, and we would potentially store all of them in the system
as we encounter them, leading to a storage cost of 2d vectors. Furthermore, to make sure
that the list remains pairwise reduced, all

(2d
2

)
≈ 2d2 pairs of vectors are compared for

reductions, leading to a time cost of approximately 2d2 vector comparisons.

Ideal lattices. To make use of the cyclic structure of certain ideal lattices, the main
idea of the ideal GaussSieve is that comparing v(s) to w(s′) is the same as comparing
v(s−s′) to w for any s, s ′: there exist shifts of v and w that are nearby iff there exists
a shift of v that is nearby to w. So we only store the two representative vectors v and
w in the system (storage cost of 2 vectors), and we only compare all d shifts of v to the
single vector w (d comparisons). To make sure that also v (w) and its own cyclic shifts
are pairwise reduced, we further need d/2 (d/2) comparisons to compare v to v(s) (w
to w(s)) for s = 1, . . . ,d/2. In total, we therefore need 2d comparisons to reduce v,w
and all their cyclic shifts.

Overall, this shows that in cyclic and negacyclic lattices, the memory cost of the
GaussSieve goes down by a factor d, and the number of inner products that we com-
pute to make sure the list is pairwise reduced also goes down by a factor approximately
d. Although only polynomial, a factor 100 speed-up and using 100 times less memory in
dimension 100 can be very useful.

12.5.2 – Hashing shifted vectors is shifting hashes of vectors. To see how we can
obtain similar improvements for the CPSieve, let us first look at the basic hash func-
tion h(x) = argmaxi |xi|, where for simplicity we again omit the sign of the hash func-
tion, leading to d different hash values, and we let the output of a hash be a number
in {1, . . . ,d} rather than a vector {e1, . . . ,ed}. Suppose we have a cyclic lattice, and for
some lattice vector v we have h(v) = i for some i ∈ {1, . . . ,d}. Due to the choice of the
hash function, we know that if we shift the entries of v to the right by s positions to get
v(s), then the hash of this vector will increase by s as well, modulo d (where the modular
computations are performed with offset 1):

h(v(s)) = [h(v) + s] mod d. (12.17)

As a result, given a vector v and its base hash value, we know exactly what the hash value
of its rotations will be. We also know that h(v) = h(w) if and only if h(v(s)) = h(w(s))
for any s. For the basic hash function h, this property allows us to use a similar trick as in
the ideal GaussSieve: we only store one representative of w in the hash tables, and for
finding shifts of v andwwhich are nearby, we only compare all d shifts v(s) to the vectors
in the buckets h(v(s)). We are then guaranteed that if any pair of vectors v(s) andw(s′)

156 CHAPTER 12. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING

can be reduced and have the same hash value, we will encounter this reduction when we
compare v(s−s′) andw as they will also have the same hash values.

12.5.3 – Ideal rerandomizations through circulant matrices. While this shows that
the basic hash function h has this nice property that allows us to obtain the linear re-
ductions in the time and space complexity similar to the ideal GaussSieve, to make this
algorithm work we will need all hash functions from H to satisfy these properties. And
once we apply a random (pseudo-)rotation A to a vector v, we may lose the property
described in (12.17):

hA(v(s)) = h(Av(s))
?
= [h(Av) + s] mod d = [hA(v) + s] mod d, (12.18)

The second equality is crucial here, as without preserving the property that the hash of a
shift of a vector equals the modular shift of the hash of a vector, it might be the case that
there exists a pair of vectors v(s) and w(s′) that is nearby and has the same hash value,
while we will not compare v(s−s′) andw because they have different hash values. If that
happens, then not all 2d shifts of both vectors are pairwise reduced, which implies that
we will miss some of the potential reductions within our list. Then the list size inevitably
goes up, and we may lose the factor d speed-up again.

To guarantee that the second equality in (12.18) is always an equality, we would
like to make sure that Av(s) = (Av)(s), i.e., multiplying a shifted vector by a random
Gaussian matrix A is the same as shifting the vector which has already been multiplied
by A by the same number of positions. After all, in that case we would have

hA(v(s)) = h(Av(s)) = h((Av)(s)) = [h(Av) + s] mod d = [hA(v) + s] mod d,
(12.19)

where the second equality follows from the condition Av(s) = (Av)(s) and the third
equality follows from the property (12.17) of the base hash function h. So if we can
guarantee that Av(s) = (Av)(s) for all v and s, then the entire hash family H satisfies
the property we need to obtain a linear speed-up.

Now, it is not hard to see that the condition Av(s) = (Av)(s) for all v ∈ Rd and
s ∈ {1, . . . ,d} is equivalent to the condition that A is circulant; substituting v = e1 and
varying s = 1, . . . ,d tells us that ai,j = a1,[j−i+1] mod d for all i and j. Note that if A is
circulant, then also this condition is satisfied. In other words, for matrices A to satisfy
these properties, we are free to choose the first row of A, and the i-th row of the matrix
is then defined as the (i− 1)-th cyclic shift of A.

So finally, the question becomes: can we simply impose the condition that this pseudo-
rotation matrix A is circulant? While proving that the answer is yes or no seems difficult,
experimentally the answer seems to be yes: by only generating the first row of each
rerandomization matrix A at random from a standard Gaussian distribution, and then
deriving the remaining entries ofA from the first row, we obtain circulant matrices which
appear to be as suitable for (pseudo-)rotations as fully random Gaussian matrices. The
resulting circulant matrices on average appear to be as orthogonal as non-circulant ones,
thus preserving relative norms and distances between vectors, and do not seem to perform
worse in our experiments than non-circulant matrices.

12.5. THE IDEAL GAUSSSIEVE WITH CROSS-POLYTOPE LSH 157

Algorithm 12.1 Reducing a vector v with L in the ideal CrossPolytopeSieve

1: for each hash table Ti do
2: Compute the k base hash values (H1, . . . ,Hk) = (hi,1(v), . . . ,hi,k(v))
3: for each cyclic shift s = 0, . . . ,d− 1 do
4: Compute v(s)’s partial hash values H(s)

j = [Hj + s] mod d for j = 1, . . . , k

5: Compute v(s)’s hash value hi(v(s)) =
k∑
j=1

(H
(s)
j − 1)dj−1 ∈ {0, . . . ,dk − 1}

6: for eachw ∈ Ti[hi(v(s))] do
7: Reduce v(s) withw
8: Reducew with v(s)
9: ifw has changed then

10: Removew from the list L
11: Removew from all t hash tables Ti
12: Addw to the stack S (unlessw = 0)
13: if v or one of its shifts has been modified then
14: Add the reduced (shift of) v to the stack S (unless v = 0)
15: else
16: Add v to the list L
17: Add v to all t hash tables Ti to the buckets Ti[hi(v)]

Remark 12.1. The angular/hyperplane hash functions of the HashSieve (Chapter 10),
as well as the hypercone hash functions in the GaussSieve with hypercone LSH (Chap-
ter 11) do not have the properties mentioned above, and although it may be possible to
obtain the trivial decrease in the space complexity of a factor d, it seems impossible to
achieve the same factor d time speed-up for these other methods.

Remark 12.2. By using circulant matrices, computing hashes of shifted vectors can sim-
ply be done by shifting the hash of the original vector. Also, one can compute the prod-
uct of a circulant matrix with an arbitrary vector in O(d logd) time using Fast Fourier
Transforms [GL96] instead of O(d2) time. However, the even faster random rotations
described in [AIL+15] using Hadamard transforms cannot be used here, as we need A to
be circulant to obtain this additional factor d speed-up.

12.5.4 – Modifying the reductions. Using these circulant matrices on ideal (cyclic)
lattices, the reduction in Lines 4–13 of the GaussSieve (Algorithm 8.2) can be replaced
by the steps described in Algorithm 12.1. It is described for the case where both +ei
and −ei are mapped to the same hash value i, but it can easily be adjusted for the full
cross-polytope hash family with 2d hash values.

NTRU lattices. The lattice basis of an NTRU encryption scheme [HPS98] can be de-
scribed by a prime power d ′, a small power of two q, the ring R = Zq[X]/(Xd

′
− 1), and

two polynomials f,g ∈ R with small coefficients, e.g. with coefficients in {−1, 0, 1}. We
require that f is invertible in R and set h = g/f mod q. The public basis is then given

158 CHAPTER 12. CROSS-POLYTOPE LOCALITY-SENSITIVE HASHING

by d ′,q and h as the d× d matrix B (where d = 2d ′) as follows:

B =

q
q 0

. . .
q

h0 h1 · · · hd′−1 1
hd′−1 h0 · · · hd′−2 1
...

...
. . .

...
. . .

h1 h2 · · · h0 1

. (12.20)

The rows of this matrix form the basis vectors, and the top-right block as well as the
off-diagonal entries of the top-left and bottom-right blocks are all 0. Note that not only
(g‖f) but also all block-wise rotations (g ·Xk‖f ·Xk) are short vectors in the lattice. More
generally, each block of d ′ = d/2 entries of a lattice vector can be shifted (without minus
sign) to obtain another valid lattice vector.

For these lattices we can apply the techniques described above, but as we only have
d/2 shifts of a vector in d dimensions, the expected speed-ups and memory gains are not
equal to the dimension, but only to half the dimension of the lattice we are investigating.
In Algorithm 12.1, this means that we only consider cyclic shifts s = 0, . . . ,d ′ − 1, and a
cyclic shift now corresponds to shifting both blocks of v so the right by s positions.

Power-of-two cyclotomic ideal lattices. Recall that power-of-two cyclotomic deal lattices
are defined over the ring Z[X]/(Xd + 1) where d is a power of 2. These are negacyclic
lattices, and so for any lattice vector v all its 2d shifts (with negative carry) are in the
lattice as well, and v(d) = −v. If we map both ±v to the same hash value (i.e. we ignore
the sign of the maximum value), then Algorithm 12.1 can be used for speeding up the
reductions by a factor approximately d.

12.5.5 – Experiments for ideal lattices. For testing the performance of SVP algo-
rithms on ideal lattices, and comparing it with non-ideal lattices, we focused on NTRU
lattices where d = 2d ′ and d ′ is prime, and on cyclotomic lattices where d = 2s is a
power of 2, which can be generated with the ideal lattice challenge generator [PS15].
For the NTRU lattices we considered values d = 38, 46, 58, 62, 74, while for the cyclo-
tomic lattices we restricted our experiments to only d = 64; for d = 32 the data will be
unreliable as the algorithm terminates very quickly and the basis reduction routine some-
times already finds a shortest vector, while d = 128 is out of reach for our single-core
proof-of-concept implementation; investigating the costs of solving the 128-dimensional
ideal lattice challenge with the ideal CrossPolytopeSieve, as done in [BNvdP14,IKMT14],
is left for future work.

The results of these experiments on ideal lattices are shown in Figure 12.2e in com-
parison to the random, non-ideal complexities of the CrossPolytopeSieve with k = 2. The
costs for NTRU lattices are an order of magnitude lower than in the non-ideal case, and
for cyclotomic lattices (where we get an extra factor 2 improvement in both the time and
the space) we obtain yet another order of improvement over NTRU lattices.

CHAPTER 13

Hypercone locality-sensitive filtering

13.1 — Overview

Context. In Chapters 10 and 11 we considered applying existing techniques from
the nearest neighbor literature to sieving: the celebrated hyperplane LSH method of
Charikar [Cha02] (Chapter 10) and the spherical (hypercone) LSH method of Andoni–
Indyk–Nguyễn–Razenshteyn [AINR14, AR15a] (Chapter 11). As the latter method is
asymptotically optimal but less efficient in practice due to the large overhead of com-
puting hashes, we asked whether we could achieve the same optimality as hypercone
LSH but with the efficiency of hyperplane LSH. In Chapter 12 we saw that this is indeed
possible, by improving upon the existing nearest neighbor search literature and construct-
ing a new, efficient LSH method (cross-polytope LSH). As the asymptotic performance
of cross-polytope LSH matches lower bounds of e.g. Dubiner [Dub10] and Andoni and
Razenshteyn [AR15b], and the overhead of computing hashes is minimal, is using cross-
polytope LSH the best we can do for finding nearby vectors in lattice sieving?

Low-density NNS. Looking closely at the fine print of various lower bounds on
locality-sensitive hashing [AR15b,Dub10,MNP07,OWZ11,OWZ14], we see that all these
results rely on the same assumption1: the probability of collision for nearby and distant
vectors is assumed to be at least 2−o(d). After all, if e.g. the probability of collision in one
hash function for nearby vectors is only 2−Θ(d), then we need at least t = 2Θ(d) hash
tables to guarantee that nearby vectors are found through collisions. As the data set in
NNS is commonly assumed to be of low density, i.e. of size only n = 2o(d), a number of
hash tables t� poly(n) is clearly not going to be useful here.

High-density NNS. In lattice sieving however, note that we commonly have a list
of lattice vectors of size n = (4/3)d/2+o(d) ≈ 20.21d+o(d) that we are searching in,
and so in sieving we are in the high-density regime of n = 2Θ(d). In that case, a collision
probability 2−Θ(d) and a number of hash tables t = 2Θ(d) is not unthinkable: whereas in
the previous chapters the collision probabilities for a single hash function were 2−o(d), the
number of hash tables we used for sieving was always t = 2Θ(d). Does the same bound
ρ > 1/(2c2 − 1) on LSH for approximation factor c also hold in high-density regimes?
Or can we design nearest neighbor methods specifically for the case of n = 2Θ(d) that
perform even better in this regime, which may be useful for lattice sieving?

?This chapter is based on results from [BDGL16].
1Strictly speaking Dubiner [Dub10] does not state this condition, but a complete proof of the statements

in [Dub10] still has not been published, and the same condition may be necessary to complete the proof.

160 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

Hypercone locality-sensitive filtering. In this chapter we introduce the concept of
locality-sensitive filtering (LSF), which in short corresponds to locality-sensitive hashing
where only few vectors are actually assigned to a bucket for one hash function. We an-
alyze its properties, its relation with LSH, and how this potentially leads to an improved
performance over LSH and smaller exponents ρ < 1/(2c2 − 1), given access to a certain
decoding oracle. To instantiate these filters, we propose to use filters defined by hyper-
cones similar to hypercone LSH, but with a larger parameter α than in Chapter 11. We
highlight similarities and differences with spherical/hypercone LSH and show how this
potentially leads to an improved performance over what is possible with locality-sensitive
hashing, given access to such a decoding oracle.

List-decodable random product codes. These results depend on the existence of an
efficient algorithm for finding the relevant hypercones that a vector lies in. To instantiate
this oracle, we propose to use filters where the random filter vectors are taken from
certain structured, concatenated codes over the sphere (rather than sampled at random
and independently) such that we can compute a vector’s relevant filters with minimal
overhead using a technique very similar in spirit to list decoding. A crucial issue is to prove
that these filters behave equally well as when all the filters were chosen independently,
and by carefully selecting the parameters, we show that this is indeed the case.

Application to lattice sieving. We finally apply this new nearest-neighbor method for
high-density settings to lattice sieving, and show that we obtain an asymptotic complexity
for solving SVP of only 20.292d+o(d), improving upon the asymptotic time complexity
of 20.298d+o(d) using hypercone LSH (Chapter 11) or cross-polytope LSH (Chapter 12).
Figure 13.1 illustrates the asymptotic time-memory trade-off for this algorithm, showing
that especially the trade-off for smaller amounts of memory is significantly better than
with LSH methods. Experimental results further show that the improvement is relevant
in moderate dimensions as well, as the subexponential overhead is small.

Outline. In Section 13.2 we first describe the locality-sensitive filtering framework,
under the assumption of an efficient decoding oracle, and without specifying the exact
filters that we will use. Section 13.3 continues with a specific instantiation of these fil-
ters using hypercones of smaller size than in hypercone LSH, and shows the potential
improvements with this method. Section 13.3 also shows how to design these filters so
that decoding can be done efficiently, without diminishing the asymptotic performance
of this scheme. Sections 13.4 and 13.5 finally show the (theoretical and practical) effects
of applying this method to sieving algorithms.

13.2 — The locality-sensitive filtering (LSF) framework

13.2.1 – Locality-sensitive filters. Instead of locality-sensitive (hash) functions con-
sidered in previous chapters, here we will consider locality-sensitive filters, which map
an input list L to an output list L ′ ⊆ L. Vectors v ∈ L ′ are said to survive this filter. Ideally
we would like to use filters with the property that only nearby vectors will survive the
same filter, so that if we apply a (sequence of) filter(s) to an input set L, then the output
list L ′ only contains vectors which are nearby in space. One output list is best compared
with one hash bucket in LSH, where in LSH we make the additional assumption that each
vector is assigned to exactly one bucket in a hash table (not accounting for probing).

13.2. THE LOCALITY-SENSITIVE FILTERING (LSF) FRAMEWORK 161

Tim
e =

Sp
ac

e

●●

●●
●●

●

20.20 d 20.25 d 20.30 d 20.35 d 20.40 d 20.45 d 20.50 d

20.25 d

20.30 d

20.35 d

20.40 d

20.45 d

20.50 d

Figure 13.1: The asymptotic time-memory trade-off for hypercone filtering (blue) compared to the asymptotic
complexities of other sieving algorithms considered in previous chapters (red). The blue curve and the points
on this curve apply to both the GaussSieve and the Nguyễn–Vidick sieve, while the bottom-left blue point and
the two red points above it only apply to the Nguyễn–Vidick sieve.

To solve the nearest neighbor problem with these filters, we propose the following
method. Given a distribution F of filters, we draw t · k filters fi,j ∼ F, and combine k
at a time to build t filters fi, where w passes through the filter fi if it passes through
all filters fi,j for j = 1, . . .k. Then, given the list L, we build t different filtered buckets
Bf1 , . . . ,Bft , where a vectorw ∈ L is inserted into the bucket Bfi iffw survives filter fi.
Finally, given a query vector v, we check which of the filters it passes through, gather all
the candidate vectors that pass through at least one of the same combined filters fi, and
search this set of candidates for a nearest neighbor. With a suitable filter family F and
parameters k and t, this may allow us to solve (approximate) nearest-neighbor searching.

13.2.2 – Performance of LSF. For analyzing the performance of LSF, we assume that
we have an efficient oracleOwhich identifies the filters that a vector v passes through (the
relevant filters for v) in time Õ(Fv), where Fv counts v’s relevant filters. This assumption
is crucial, as without this oracle finding the relevant filters may take time Õ(t), and we
may not obtain an improved performance over LSH. Assuming the filter distribution F is
spherically symmetric, similar to collision probabilities in LSH we write

p(θ) = Pf∼F[v,w ∈ Bf | θ(v,w) = θ], p0 = Pf∼F[v ∈ Bf]. (13.1)

162 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

Here p0 may be informally thought of as limθ→0 p(θ), i.e., the probability that v collides
with itself in a filter. Now, v survives a sequence of k filters with probability pk0 , so
Fv = O(t · pk0). On the other hand, a vector w at angle θ with v collides with v in a k-
concatenated filter with probability p(θ)k. If for simplicity we assume that n vectors lie at
an angle θ2 with our target vector v and there is one near neighbor at angular distance θ1,
then the costs of processing a query with an efficient oracle are Q = t ·pk0 + t ·p(θ2)

k ·n,
with the first term counting the relevant filters and the second term counting the collisions
of distant vectors.

Next, to guarantee that we will find a nearby vector at angle θ1 with probability 1− ε
if it exists, for some constant ε ∈ (0, 1), we need 1−(1−p(θ1)

k)t = O(t·p(θ1)
k) > 1−ε,

or t = O(1/p(θ1)
k). We further want to minimize the total cost Q of processing a query,

which corresponds to balancing the two contributions to Q; larger k and t lead to more
selective filtering and fewer comparisons, but increase the cost of finding the relevant
filters. Equating the two terms translates to pk0 = p(θ2)

k ·n up to subexponential terms.
Solving for k, we obtain expressions for k and t, which in turn can be substituted into Q

to find the best parameters for LSF.

Theorem 13.1. Let F be an LSF family with collision probability function p, and let O be
an oracle computing a vector v’s relevant filters in time Õ(Fv). Let ρ, ρt be defined as

ρ =
logp0 − logp(θ1)

logp0 − logp(θ2)
, ρt =

− logp(θ1)

logp0 − logp(θ2)
. (13.2)

Then we can solve approximate NNS with parameters θ1 and θ2 in time Õ(nρ) and space
Õ(n1+ρ) with preprocessing time Õ(n1+ρ), with parameters

k =
logn

logp0 − logp(θ2)
, t = O(nρt). (13.3)

Proof. Using the parameters stated above, we can expand various quantities as follows:

n = exp
[

logn
logp0 − logp(θ2)

· (lnp0 − lnp(θ2))

]
, (13.4)

t = exp
[

logn
logp0 − logp(θ2)

· (− lnp(θ1))

]
, (13.5)

pk = exp
[

logn
logp0 − logp(θ2)

· (lnp)
]

. (p ∈ {p0,p(θ1),p(θ2)}) (13.6)

Combining these expressions, we see that the number of relevant filters for one query
is asymptotically given by t · pk0 = nρ; the nearby collision probability is of the order
t ·p(θ1)

k = O(1); and the number of distant vector collisions is approximately t ·p(θ2)
k ·

n = nρ. This means the query is correctly answered with high probability, with query
time Õ(nρ). As each vector is assigned to Õ(t · pk0) = Õ(nρ) filters, in total the n
vectors require a storage of Õ(n1+ρ) entries in the filter buckets. Preprocessing takes
time proportional to the storage, as we assume our decoding oracle is efficient.

13.2.3 – Relation with locality-sensitive hashing. Notice the similarities and differ-
ences between Theorem 13.1 and Lemma 10.2 on the parameters for locality-sensitive

13.3. HYPERCONE LOCALITY-SENSITIVE FILTERING 163

hashing, which we restate below (slightly differently) for comparison:

ρ ′ =
log 1 − logp(θ1)

log 1 − logp(θ2)
, k ′ =

logn
log 1 − logp(θ2)

, t ′ = O(nρ). (13.7)

Looking at the two exponents ρ and ρt for LSF and the exponent ρ ′ for LSH, we can
establish the following simple but powerful inequalities from the fact that p0 6 1:

ρ 6 ρ ′ 6 ρt. (13.8)

These two inequalities say that the exponent ρ for solving NNS with filtering is potentially
smaller (better) than for LSH with the same hash/filter family (ρ 6 ρ ′). The reason we
obtain a better exponent lies in the decoding oracle; without a decoding oracle, the naive
cost for finding relevant vectors would be Õ(t) = Õ(nρt), and we would achieve a worse
exponent than with LSH (ρt > ρ ′).

Note that in LSH, the function p denotes collision probabilities in a hash function,
and as each vector always has one output value (i.e. is assigned to one bucket) we have
limθ→0 p(0) = 1: a vector always collides with itself in LSH. For LSF we only get a
collision of v with itself if v survives filter f. So generally p0 < 1 for LSF, while informally
p0 = 1 in LSH, which leads to the different exponents above. Observe that substituting
p0 = 1 in the exponents for LSF unsurprisingly leads to ρ = ρ ′ = ρt.

Remark 13.1. The above theorem is given only as an illustration of our approach, as we
do not know of any implementation of such an oracle when the filters are chosen indepen-
dently and uniformly at random from F. In Section 13.3.4 we do provide such an oracle
for filters that are more structured, yet still ensuring the proper collision probabilities.

13.3 — Hypercone locality-sensitive filtering

For analyzing the hypercone filters which we will introduce in Section 13.3.2, we
first introduce some terminology and preliminary lemmas regarding high-dimensional
geometric objects on the unit sphere.

13.3.1 – Geometric objects on the sphere. Let µ be the canonical Lebesgue measure
over Rd, and let Sd−1 = {x ∈ Rd : ‖x‖ = 1} again denote the unit sphere with respect to
the Euclidean norm inRd. As usual, let 〈·, ·〉 denote the standard Euclidean inner product.
We denote half-spaces with normal vector v and parameter α ∈ [0, 1] by Hv,α = {x ∈
Rd : 〈v, x〉 > α}. For v,w ∈ Sd−1 such that 〈v,w〉 = cos θ and α,β ∈ (0, 1) we further
introduce spherical caps and wedges as follows:

Cv,α = Hv,α ∩ Sd−1, Wv,α,w,β = Hv,α ∩Hw,β ∩ Sd−1. (13.9)

The following two lemmas estimate the volumes of spherical caps and wedges for large
d. Lemma 13.2 is elementary, while for Lemma 13.4 we make use of an additional lemma
below (Lemma 13.3).

Lemma 13.2. For any α ∈ (0, 1) and v ∈ Sd−1, we have

Cd(α) :=
µ(Cv,α)

µ(Sd−1)
= poly(d) ·

(√
1 − α2

)d
. (13.10)

164 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

Proof. Using [MV10b, Lemma 4.1]with R = 1 and h = 1−αwe obtain the lower bound,
while an upper bound can be found with similar techniques (see [NV08, Lemma 3.4]).

Lemma 13.3. Let γ ∈ (0, 1), and let g be a continuous function on (γ, 1) such that g(r) =
h(r)(r− γ)κ for some positive real number κ > 0 where h(r) is continuous over (γ, 1), has
limit h(r)→ 1 as r→ γ, and is bounded by H > 0. Then

I(γ) =

∫1

r=γ

g(r)
(√

1 − r2
)d
dr

(d→∞)
∼ Γ(κ+ 1)

(
1 − γ2

dγ

)κ+1

·
(√

1 − γ2
)d

.

(13.11)

In other words, assuming that γ, κ are constant, we have I(γ) = poly(d) ·
(√

1 − γ2
)d

.

Proof. Using the change of variable q = d(r− γ) or equivalently r = γ+ q/d, we get

I(γ) =

∫d(1−γ)

q=0
h
(
γ+

q

d

)(q
d

)κ(√
1 − γ2 −

2γq
d

−
q2

d2

)d
1
d
dq. (13.12)

Slightly rewriting the integral, and pulling out some constant factors, we obtain the fol-
lowing expression, where 1{P} = 1 if P holds and 1{P} = 0 otherwise.

I(γ) =

(√
1 − γ2

)d
dκ+1

{∫∞
q=0

1{q 6 (1 − γ)d}h
(
γ+

q

d

)
qκ (13.13)

×

(√
1 −

2γq
(1 − γ2)d

−
q2

(1 − γ2)d2

)d
dq

}
. (13.14)

For large d, the term inside the integral converges to h(γ)qκ exp(−γq/(1 − γ2)) for
all q > 0, and is bounded by Hqκ exp(−γq/(1 − γ2)), which is integrable over R+.
By the dominated convergence theorem, the integral converges to

∫∞
0 q

κ exp(−γq/(1 −
γ2)), which is a standard Laplace integral [AS72, Equation (29.3.7)] equal to the given
expression. This concludes the proof.

Lemma 13.4. Let α,β ∈ (0, 1) and θ ∈ (0, π2) such that min{α
β

, β
α
} > cos θ, and let

v,w ∈ Sd−1 with 〈v,w〉 = cos θ. Then we have

Wd(α,β, θ) :=
µ(Wv,α,w,β)

µ(Sd−1)
= poly(d) ·

(√
1 − γ2

)d
, (13.15)

where γ satisfies γ2 = (α2 + β2 − 2αβ cos θ)/(sin2 θ). For α = β, this simplifies to

Wd(α,α, θ) = poly(d) ·

(√
1 −

2α2

1 + cos θ

)d
. (13.16)

13.3. HYPERCONE LOCALITY-SENSITIVE FILTERING 165

Proof. Let us compute the volume of a wedge with parameters α,β, θ, which is the vol-
ume of the intersection of the spherical caps of height 1 −α centered at v = e1 (defined
by 〈v, x〉 > α) and of height 1 − β centered atw = e1 cos θ+ e2 sin θ (i.e. 〈w, x〉 > β).

Let us denote the orthogonal projection from the unit sphere onto the plane defined
by the three points 0, v,w by the function f. For any measurable subset U of the two-
dimensional circle, the surface of f−1(U) in the unit sphere has the following volume:∫

(x,y)∈U

µ(Sd−3)

µ(Sd−1)

(√
1 − x2 − y2

)d−4
dxdy. (13.17)

Alternatively, if U is described in terms of radial coordinates r and φ:∫
(r,φ)∈U

µ(Sd−3)

µ(Sd−1)

(√
1 − r2

)d−4
r dr dφ. (13.18)

For all r ∈ [0, 1], let us write g(r) =
∫
φ:(r,φ)∈U dφ ∈ [0, 2π]. If U is a convex set, then

g(r) is a continuous function from [0, 1] to [0, 2π], and we can make use of Lemma 13.3.
In the case of the wedge, the set U is a rounded triangle, defined by the three in-

equalities 〈v, x〉 > α, 〈w, x〉 > β, and ‖x‖ 6 1. The point of smallest norm in this
rounded triangle is the vector c satisfying 〈v, c〉 = α and 〈w, c〉 = β, and its norm is
equal to the given expression for γ. In this case, the function g(r) is null over [0,γ],
continuous and increasing over [γ, 1], and scales as Θ(r− γ) (i.e. κ = 1) when r is close
to γ. Thus, applying Lemma 13.3 with κ = 1, the volume of the wedge is proportional to
dΘ(1)(

√
1 − γ2)d for large d.

In the lemma above, the condition min{α
β

, β
α
} > cos θ is equivalent to the condition

γ2 > max{α2,β2}, which guarantees that the point c mentioned in the proof above is
indeed the closest point to the origin. If e.g. β > α cos θ then the point of smallest norm
in the resulting triangle has norm β and is not a corner of the triangle. The lemma can
be extended to arbitrary α and β by carefully observing which point in the projection has
the smallest norm, but for our purposes the above statement of the lemma suffices.

Note that the main difference between a wedge and a spherical cap is that for a cap
of parameter γ, the function g(r) would be proportional to Θ(

√
r− γ) corresponding to

κ = 1
2 , so the volume of the cap is proportional to (

√
1 − γ2)d/

√
d for large d. Asymp-

totically, up to factors polynomial in d, a spherical cap with parameter γ and a wedge
with parameters α,β, θ have the same volume.

13.3.2 – Spherical and hypercone filters. We will instantiate the concept of locality-
sensitive filtering with the following spherical cap LSF distribution F. A filter is con-
structed by drawing a random vector s ∈ Sd−1, and a vector w ∈ Sd−1 is inserted into
the bucket corresponding to this filter if it satisfies 〈w, s〉 > β. In other words, a vec-
tor w is inserted in the filter bucket if it lies in the spherical cap centered at s of height
1 − β. Similar to spherical and hypercone LSH, we can trivially extend this notion to all
of Rd to form hypercone filters, by saying a vector w ∈ Rd is inserted into this filter if
〈w, s〉 > β · ‖w‖, or alternatively, w lies in the hypercone defined by the spherical cap
around s of height 1 − β.

Then, after inserting all vectors in the corresponding filter buckets, a query v ∈ Rd
is answered by recovering all those filters with filter vectors s satisfying 〈v, s〉 > α · ‖v‖

166 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

(note the asymmetry between α and β), and checking these filters for nearby vectors. For
searching, we thus use the parameter α for defining which filters are relevant, while for
insertions we use the parameter β. We will see later that these parameters can be tuned
to obtain a trade-off between the time and the memory: α = β is optimal for minimizing
the query time complexity, while α < β can be used for more refined searching and less
refined insertions in the database, so that less memory is used to store vectors in filters,
and more time is spent on answering queries.

13.3.3 – Collision probabilities for α = β. Next, we observe that when querying a
vector v and encountering a relevant filter for v, we find the vectorw in the same bucket
if and only if the corresponding filter vector s lies in the two spherical caps defined by
v,α and w,β. Equivalently, v and w collide iff s lies in the wedge Wv,α,w,β. As these
vectors s are drawn uniformly at random from Sd−1, the probability of a collision in one
filter is equal to W(α,β, θ) if v,w have pairwise angle θ. By Lemma 13.4 we therefore
obtain the following filter collision probabilities for the case of α = β:

p(θ) = Wd(α,α, θ)−1 = exp
[
d

2
ln
(

1 −
2α2

1 + cos θ

)
(1 + o(1))

]
. (13.19)

For an angle θ = 0, note that the collision probability corresponds to the probability that
v collides with itself in a given filter s. The probability that v is both added to a filter
and is found with a search over all filters is given by min{Cd(α),Cd(β)}, while if we are
interested in v’s relevant filters for searching, we find a probability of having to check
this filter for nearby vectors of Cd(α). The quantity p0 mentioned earlier corresponds to
which filters are queried for finding nearby vectors, so the right interpretation for p0 is

p0 = Cd(α) = exp
[
d

2
ln
(
1 − α2

)
(1 + o(1))

]
. (13.20)

For α = β this corresponds to p0 = limθ→0 p(θ) up to subexponential terms.
If we suppose we have an efficient oracle for determining a vector’s relevant filters,

then by Theorem 13.1 we obtain a performance parameter ρ in terms of α, θ1, θ2 of

ρ =
log
(
1 − α2

)
− log

(
1 − α2

[
2

1+cosθ1

])
log (1 − α2) − log

(
1 − α2

[
2

1+cosθ2

]) (1 + o(1)). (13.21)

Notice that a Taylor series expansion of ρ for d→∞ and α ≈ 0 gives us

ρ
(d→∞)−→ tan2(θ1/2)

tan2(θ2/2)
− α2

(
(1 − cos θ1)(cos θ1 − cos θ2)

(1 + cos θ1)2(1 − cos θ2)

)
+O(α4). (13.22)

For α→ 0, this is equivalent to the exponent ρ of spherical and hypercone LSH of Chap-
ter 11 and of cross-polytope LSH considered in Chapter 12. In other words, for small
α the performance of hypercone filtering (provided an oracle O exists) is equivalent to
the performance of spherical, hypercone, and cross-polytope LSH. On the other hand,
observe that if α > 0, then ρ will become smaller than for each of these LSH methods,
and hypercone LSF may be asymptotically superior to all these methods for large d.

13.3. HYPERCONE LOCALITY-SENSITIVE FILTERING 167

Optimizing α and setting k = 1. An intrinsic lower bound on the number of filters
k that we need to use sequentially for one combined filter is given by k > 1, which
translates to a bound on α as follows:

k =
logn

logp0 − logp(θ2)
> 1 =⇒ α 6 α0 =

√
1 +

n2/d(cos θ2 − 1)
2n2/d − cos θ2 − 1

. (13.23)

Depending on n, θ2, as well as on the existence of efficient decoding oracles for given
α, this limits which values α can be used. We further observe that ρ is decreasing in α,
which implies that one should always choose α to be as large as possible. If we assume
that our decoding oracle is not limited by certain values of α, this suggests taking α = α0

is optimal, and we should always set k = 1. So in that case, we should always only use
only one consecutive filter for each of the t combined filters.

Note that the upper bound α0 is decreasing with n2/d, and so high-density settings
with n = exp(κd) for large densities κ are easier to solve than low-density cases, which
matches our intuition. For the extreme high-density setting of κ→∞ we further obtain
α0 → 1

2

√
2 ≈ 0.71, while for κ → 0 the upper bound on α converges to 0. This again

illustrates that for low-density settings, we cannot use values α significantly larger than
0, and we already saw that as α→ 0 we approach the performance of spherical LSH. We
only obtain better results for high-density settings κ > 0, for which lower bounds on LSH
do not apply and so it may be possible to do better even with LSH methods.

The exponent ρ for distances
√

2 and 1
c

√
2.. For general θ1, θ2,n, we now have a recipe

to choose our parameters α, t, ρ and k = 1. To study the performance of hypercone
LSF and to compare it with other results, let us focus on the random case of [AR15a],
where θ1 = arccos(1 − 1/c2) and θ2 = π

2 , so that nearby vectors are a factor c closer
to the target vector than distant, orthogonal vectors. In that case we obtain α = α0 =√
(exp(2κ) − 1)/(2 exp(2κ) − 1) as our optimal value, which in turn can be substituted

into the expression for ρ. Figure 13.2 illustrates the resulting values of ρ for different
approximation factors c and densities κ = (lnn)/d.

Performing a Taylor series expansion for ρ for small κ (and fixed c > 1), we obtain

ρ
(d→∞)−→ 1

2c2 − 1
−

(
1 −

1
2c2 − 1

)
κ+O(κ2). (κ→ 0) (13.24)

Again, we see the standard LSH lower bound appear as the leading term, and the first
order term is negative, leading to smaller (better) values of ρ as soon as κ is a bit larger
than 0. For large approximation factors c this implies that we obtain ρ ∼ 1/(2c2) for
small κ. Alternatively, if we look at high-density settings, then for arbitrary c and large κ
we get

ρ
(d→∞)−→ 1

2κ
ln
(

1 +
1

2c2 − 2

)
+O

(
1
κ2

)
. (κ→∞) (13.25)

In this case, for large approximation factors c and large densities κ we get ρ ∼ 1/(4κc2)
with lower order terms disappearing as c, κ,d→∞.

13.3.4 – List-decodable random product codes. To build an oracle that is able to
efficiently determine the set of relevant filters for a given vector in the context of hyper-
cone LSF, we will modify the distribution of filters; rather than sampling all of the filters

168 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

Figure 13.2: The performance parameter ρ for hypercone LSF plotted against the approximation factor c,
in the random setting [AR15a] and for asymptotically large d. For κ → 0 we have α 6 α0 → 0 and
ρ→ 1/(2c2 − 1), while for κ→∞ the upper bound on α converges as α 6 α0 → 1

2

√
2 so that ρ→ 0.

independently and uniformly at random from the sphere, we will use a structured code
C which determines which filters we use, and which admits a fast decoding algorithm for
finding the relevant vectors.

The idea behind choosing this code is that we split the d dimensions into m blocks
of size d ′ = d/m, where we assume d ′,m are both integral. Then, instead of sampling
t filter vectors C = {s1, . . . , st} ⊂ Sd−1 at random2, for each of the m blocks we sample
t ′ = t1/m vectors Cj = {sj,1, . . . , sj,t′ } ⊂ Sd

′−1 at random. To form the complete set
of filters, we then take the concatenation code of these m subcodes, by defining filter
vectors s = (s1,i1 , s2,i2 , . . . , sm,im) ∈ Sd−1 for i1, . . . , im ∈ {1, . . . , t ′} and sj,ij ∈ Cj.
Formally, this leads to the following definition of random product codes.

Definition 13.5. The distribution RPC(d,m, t) is defined as the distribution of C = C1 ×
· · · × Cm, where the codes Ci ⊂

√
1/m · Sb−1 for i = 1, . . . ,m are sets of t ′ = t1/m

random, independent, uniform vectors over the sphere
√

1/m · Sb−1. A random product
code C← RPC(d,m, t) has (t1/m)m = t elements.

Intuitively, choosing m large (using many blocks) means that the code becomes less
similar to a uniformly random code, but largem also means that we can decode more effi-
ciently, as we will see later. This means that we should not takem too small (decodability)
and not too large (randomness). A suitable choice is to takem to be polylogarithmic in d
(i.e. not even polynomial in the dimension), e.g. to takem = O(logd). To prove that this
choice is suitable, we need to prove that the code is efficiently list-decodable, and it must
behave almost as well as a random code when considering the probabilities of collision
between two vectors from the sphere at some angle θ.

2For convenience we will present the construction below for k = 1 so that the t·k combined filters are just
t simple filters, as taking k = 1 also seems to be the best choice in practice. The construction can be extended
to arbitrary k with similar techniques.

13.3. HYPERCONE LOCALITY-SENSITIVE FILTERING 169

Note that with these concatenated codes, the norms of vectors s ∈ C are guaranteed
to be equal to 1 as we set the norm of each block to be equal to

√
1/m and vectors in

different blocks are orthogonal.

List-decodability of random product codes. We first describe an efficient list decoding
algorithm for the above random product codes in the regime where the list L has expo-
nential size in d. A short description is given in the following proof and pseudo-code as
well as a more detailed description is provided below.

Lemma 13.6. There exists an algorithm that, given the description (C1, . . . ,Cm) of a ran-
dom product code C = RPC(d,m, t), a target vector v ∈ Rd, and a parameter α < 1,
returns the set of α-relevant filters S = C ∩ Cv/‖v‖,α of size |S| = Fv = Õ(t · Cd(α)) in
average time Õ(dt ′ +mt ′ log t ′ +mtCd(α)) over the randomness of C← RPC(d,m, t).

Sketch of the proof. The algorithm receives as input a codeC = A·(C1×· · ·×Cm) where
|Cj| = t

′ = t1/m; a target vector v ∈ Rd; and a parameter α < 1.
We first parse v as (v1, . . . , vm) ∈ (Rd/m)m. For all elements in each set Cj we

then compute all dot products 〈vi, si,j〉 and sort them by dot products into lists Lj, hence
obtainingm lists of size t ′, where the first elements in the lists are those with the largest
inner products with vj.

We then wish to identify all vectors s = (s1,i1 , . . . , sm,im) ∈ C1× · · · ×Cm for which
〈v, s〉 > α‖v‖, so that v/‖v‖ lies in the spherical cap Cs,α and v lies in the hypercone
corresponding to this cap. To do so, we visit the enumeration tree in a depth-first manner.
Its nodes at level k 6 m are labeled by vectors in C1 × · · · × Ck, and the parenthood
is defined by the direct prefix relation. We use the sorted lists Lj to define in which
order we will visit siblings. Because the lists are sorted, if a node has no solution in its
descendants, then we know that all its next siblings will not lead to a solution either. This
allows to prune the enumeration tree considerably, and guarantees that the number of
visited nodes is no larger than 2mFv + 1.

The overall running time is the sum of the three following terms: m·t ′ scalar products
of dimension d ′ = d/m for computing partial inner products; m · t ′ log t ′ operations for
sorting each of the lists by largest dot product; and finally the visit of O(m · Fv) nodes
for the pruned enumeration, where Fv = Õ(t · Cd(α)).

The detailed algorithm that can perform this search for relevant filters with random
product codes is given as Algorithm 13.1. In this algorithm, we denote by ci,j for j ∈ [1, t ′]
the elements of Ci after the sort, and di,j = 〈vi, ci,j〉 denotes their dot product with part
of the target vector v. The algorithm is inspired by the lattice enumeration algorithm
of Fincke, Pohst, and Kannan [Kan83, FP85], with some additional precomputations ex-
ploiting the structure of the code, which significantly shrinks the enumeration tree.

For simplicity, the core of Algorithm 13.1 is described as m nested for-loops. If m
is a variable and not a fixed parameter, we let the reader replace the m loops with its
equivalent recursive or while-based construction. Note that if an index jk is rejected at the
k-th for-loop, then we know that the partial vector (c1,j1 , . . . , ck,jk) cannot be extended
as a near neighbor, since even after adding all maximum partial dot products d`,1 for
` > k + 1, the overall dot product remains smaller than α. This, combined with the fact
that the condition in the m-th for-loop is exactly 〈v, (c1,j1 , . . . , cm,jm)〉 > α · ‖v‖, proves
that the algorithm enumerates C ∩ Cv,α, i.e., all code words which are neighbor to v.

170 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

Algorithm 13.1 Efficient decoding for random product codes

Require: The description C1, . . . ,Cm of C, a target v = (v1, . . . , vm) ∈ Rd, and α < 1
Ensure: The output set S contains all α-close code words to v in C

1: Sort each Ci by decreasing dot-product with vi
2: Precompute partial bounds Ri = α · ‖v‖−

∑m
k=i+1 dk,1 for i ∈ {1, . . . ,m}

3: Initialize S← ∅
4: for each j1 ∈ {1, . . . , t ′} satisfying di,j1 > R1 do
5: for each j2 ∈ {1, . . . , t ′} satisfying di,j2 > R2 − d1,j1 do
6: for each j3 ∈ {1, . . . , t ′} satisfying di,j2 > R3 − d1,j1 − d2,j2 do
7: [...]
8: for each jm ∈ {1, . . . , t ′} satisfying di,jm > Rm −

∑m
i=1 di,ji do

9: Add the solution c = (c1,j1 , . . . , cm,jm) to the set S

10: [...]
11: return S

Furthermore in this algorithm, unlike in classical enumeration algorithms, this ad-
ditional property proves that there is no dead branch during enumeration: each time
we enter the k-th for-loop on index jk, we are guaranteed that at least the neighbor
(c1,j1 , . . . , ck,jk , ck+1,1, . . . , cm,1) leads to a solution and will be added to the list S. Thus,
the overall complexity of the for-loop parts is proportional to 2m times the number of so-
lutions Fv: m nodes for the solution, and potentially m direct siblings of these nodes for
which we observe there are no other solutions.

Efficient list-decodability regime. If the parameters are such that the average output
size Fv is larger than the main overhead of decoding of t ′ log t ′ = Õ(t1/m), then we are
in the regime of efficient list-decoding: the running time is then essentially proportional
to the output size. This is trivially the case when t = 2Ω(d), α < 1, m = logd, and we
are in the dense case of n = 2κd for κ > 0.

Random behavior of random product codes. On average over the randomness of the
code, for two vectors v,w at angular distance θ we expect t ·Wd(α,α, θ) code words
c ∈ C to simultaneously fulfill 〈v, c〉 > α‖v‖ and 〈w, c〉 > β‖w‖. But it could be the
case that the set I = C∩Wv,α,w,β is empty most of the time, and very large in some cases;
this is in particular the case if all the points of C are concentrated in a small region of
the space. For large m we may lose this smoothness property of dividing the code words
equally over the sphere, and we need to show that for our choice ofm this is not an issue.

The following theorem states that the probability of collision for random product
codes does not deviate much from the collision probabilities for uniformly random codes.

Theorem 13.7. Suppose that t ·Wd(α,β, θ) = 2õ(
√
d) or t ·Wd(α,β, θ) = 2Ω̃(

√
d) as

d → ∞. Then, for all v,w ∈ Rd at angle θ, over the choice C ← RPC(d,m, t), the real
probability p(θ) that at least one code word c ∈ C lies in the wedge Wv,α,w,β satisfies:

min
{

2−Õ(
√
d) · t ·Wd(α,β, θ), 1 − negl(d)

}
6 p(θ) 6 t ·Wd(α,β, θ). (13.26)

13.3. HYPERCONE LOCALITY-SENSITIVE FILTERING 171

Proof. The second inequality p 6 t ·Wd(α,β, θ) is straightforward: for any c ∈ C1 ×
· · ·×Cm, the probability that c falls in Wv,α,w,β is exactly Wd(α,β, θ). Using the union
bound over the t (dependent!) code words, the result follows.

The first inequality requires more care. We list the two geometric facts required to
proceed, facts detailed and proved as Lemma 13.11 below. In the following, we have
parsed v as (v1, . . . , vm) andw as (w1, . . . ,wm).

1. The wedge Wv,α,w,β contains the product of sub-wedges Π:

Π =

m∏
i=1

1√
m

W√mvi,α,
√
mwi,β ⊂Wv,α,w,β. (13.27)

2. The aforementioned sub-wedges have parameters close to the original wedges ex-
cept with negligible probability. That is, for ε = Õ(1/

√
d),

µ(W√mvi,α,
√
mwi,β)

µ(Sd′−1)
> Wd′(α− ε,β− ε, θ− ε) >

W
1/m
d (α,β, θ)

2Õ(
√
d)

. (13.28)

Because of the inclusion (Equation (13.27)), the probability p that C ∩Wv,α,w,β is not
empty must be greater than the probability that eachCi∩W√mvi,α,

√
mwi,β is non-empty.

Since all codes Ci are perfectly random and uniformly independent, we have

p > p1p2 . . .pm − negl(d), pi = 1 −

(
1 −

µ(W√mvi,α,
√
mwi,β)

µ(Sd′−1)

)t′
. (13.29)

For conciseness, we set W = Wd(α,β, θ). Now, from (13.27), we deduce that pi =

1 − (1 −W1/m/2Õ(
√
d))t

′
. We now discuss the two cases:

• If t ′ ·W1/m → 0, then pi = 1 − (1 −W1/m/2Õ(
√
d))t

′
= t ′W1/m/2Õ(

√
d), so

p >

(
t ′ ·W1/m

2Õ(
√
d)

)m
>

t ·W
2Õ(
√
d)

. (13.30)

• If t ′ ·W1/m > 2Õ(
√
d), then pi = 1 − negl(d), so that p > 1 − negl(d).

In both case, that provides the desired result. So assuming that (13.27) holds, this con-
cludes the proof.

To prove (13.27), we continue with a sequence of four lemmas below. The first
(Lemma 13.8) is a standard bound on the tail of multivariate Gaussian distributions.
The second (Lemma 13.9) describes that if we cut a vector into a small number of pieces
m, then each of these pieces will roughly have the same norm. Lemma 13.10 then states
that if two vectors are orthogonal and are cut into m pieces, then also the m pieces will
be (almost) orthogonal. Finally, the main technical Lemma 13.11 proves (13.27).

Lemma 13.8. [LM00] For v sampled as v← N(0, 1)d and a > 0 we have

P(‖v‖2 − d > 2
√
da+ 2a) 6 e−a, and P(‖v‖2 − d 6 2

√
da) 6 e−a.

Taking a = log2 d we have 1
d
‖v‖2 = 1 + Õ(d−1/2) except with negligible probability in d.

172 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

Lemma 13.9. Let v ∈ Sd−1 be sampled uniformly at random from the sphere, and let us
write v = (v1, . . . , vm) with vi ∈ Rd/m for i = 1, . . . ,m. Then, except with negligible
probability, we have that for all i = 1, . . . ,m:

‖vi‖2 =
1
m

(
1 + Õ

(
d−1/2

))
. (13.31)

Proof. The uniform distribution on the sphere can be sampled by drawing v ′ ← N(0, 1)d

and taking v = v ′/‖v ′‖. Writing v = (v1, . . . , vm) and v ′ = (v ′1, . . . , v ′m), we then have
vi = v

′
i/‖v ′‖. We conclude the proof by applying Lemma 13.8 to ‖v ′i‖ and ‖v ′‖.

Lemma 13.10. Let v,w ∈ Sd−1 be sampled from the sphere, conditioned on 〈v,w〉 = 0.
Then for all i we have | 〈wi, vi〉 | 6 O((logd)/

√
d) except with negligible probability.

Proof. The distribution of the pair (v,w) may be sampled by applying Gram-Schmidt
orthogonalization to independent normal vectors:

v =
v ′

‖v ′‖
, w =

w ′ − 〈w ′, v〉 v
‖w ′ − 〈w ′, v〉 v‖

, where v ′,w ′ ← N(0, 1
d
)d. (13.32)

By Lemma 13.8, we have that except with negligible probability, 3
4 6 ‖v ′‖, ‖w ′‖ 6 5

4 .
Additionally, 〈w ′, v〉 is distributed according to N(0, 1

d
) over the randomness of w ′, so

we have | 〈w ′, v〉 | 6 (logd)/
√
d except with negligible probability. First, this implies

that ‖w ′ − 〈w ′, v〉 v‖ > 1
2 , and we derive:

| 〈wi, vi〉 | 6 2 (〈w ′i, vi〉− 〈w ′, v〉 ‖vi‖) (13.33)

Again, over the randomness ofw ′, the inner products 〈w ′i, vi〉 are distributed according
to N(0, 1

d
‖vi‖2), so with overwhelming probability we have:

| 〈wi, vi〉 | 6 4 · ‖vi‖ · (logd)/
√
d. (13.34)

Finally, we invoke Lemma 13.9 to conclude that for all i, we have | 〈wi, vi〉 | 6
O((logd)/

√
d) except with negligible probability.

We are now ready to prove our main technical Lemma.

Lemma 13.11. Let v,w be independent, uniformly random samples from Sd−1 conditioned
on the fact that 〈v,w〉 = cos θ. Then, except with negligible probability, for some ε =
Õ(d−1/2) the following holds for all i:

µ(W√mvi,α,
√
mwi,β)

µ(Sd′−1)
> Wd′(α− ε,β− ε, θ− ε). (13.35)

Additionally, the wedge product Π =
∏m
i=1

1√
m
W√mvi,α,

√
mwi,β is included in Wv,α,w,β.

Proof. Let us start by proving the inclusionΠ ⊂Wv,α,w,β. Let x = (x1, . . . , xm) ∈ Π, that
is, each xi belongs to 1√

m
Sd
′−1 and satisfies 〈xi, vi〉 > α

m
and 〈xi,wi〉 > β

m
. Summing

over all i, we obtain ‖x‖2 = 1, 〈x, v〉 > α and 〈x,w〉 > β, which concludes the proof of
the inclusion.

13.4. THE NGUYEN–VIDICK SIEVE WITH HYPERCONE LSF 173

We now move to the proof that µ(W√mvi,α,
√
mwi,β) > Wd′(α−ε,β−ε, θ−ε). First

note thatWa,α,b,β has volumeW(α‖a‖ ,
β
‖b‖ ,

〈a,b〉
‖a‖‖b‖), so it is enough to prove that ‖vi‖2 =

1
m
(1 + Õ(d−1/2)), ‖wi‖2 = 1

m
(1 + Õ(d−1/2)) and 〈vi,wi〉 = cosθ

m
(1 + Õ(d−1/2)). The

first two statements follow from Lemma 13.9 with overwhelming probability. For the
last one, writew = v cos θ+w ′ sin θ where v,w ′ are sampled uniformly on the sphere
conditioned on being orthogonal. Then, one writes

〈vi,wi〉 = ‖vi‖2 cos θ+ 〈vi,w ′i〉 =
cos θ
m

(
1 + Õ

(
1√
d

))
+O

(
logd√
d

)
, (13.36)

where the second term follows from Lemma 13.10. This concludes the proof.

Application to locality-sensitive filtering. Equipped with this code we may now replace,
in the construction of Sections 13.2 and 13.3, the set of t independent filters, by a set
of filters defined by a code C ← RPC(m,d, t). Algorithm 13.1 provides the efficient
oracle O that computes the set of relevant filters for a vector for parameter α (query)
or β (insertion/deletion). Theorem 13.7 ensures that the probabilities of collisions (and
hence, the complexity analysis) presented in Sections 13.2 and 13.3 also hold when the
filters are not chosen independently but according to a random product code.

13.3.5 – Relation with other techniques. Before continuing with the application to
sieving, let us briefly highlight the relation between the hypercone filtering approach and
other methods considered in previous chapters:

• Cross-polytope hashing: Taking α = β = 1/
√

log2(2d) in the filtering approach is
very similar to using cross-polytope hashing, where instead of sampling 2log2(2d) =
2d random filter vectors from the sphere, we take these points as the vertices of the
cross-polytope.

• Hypercone hashing: Taking α = β = d−1/4 essentially leads to hypercone hashing,
where the list-decoding now becomes unnecessary to guarantee that there is no
exponential overhead in the decoding stages.

• Hyperplane hashing: Taking α = β = 0 means we divide the space into half-spaces,
which closely resembles the hyperplane hashing approach of Charikar [Cha02].

Note that we obtained the best results in this chapter with α,β ∈ (0, 1) strictly larger than
0 (and not converging to 0 as d → ∞). The previous best results were obtained using
cross-polytope hashing and hypercone hashing, which both correspond to α = β = o(1).
The worst asymptotic results were obtained with hyperplane hashing, corresponding to
α = β = 0. In the end all methods are very similar, and it seems that the larger α and β,
the better.

13.4 — The Nguyễn–Vidick sieve with hypercone LSF

Let us now consider how we can apply the hypercone filtering framework to sieving,
and as usual we first focus on the Nguyễn–Vidick sieve. Combining hypercone filtering
with sieving is very similar to combining locality-sensitive hash methods with sieving, but
there are some small changes. Taking the sieve described in Algorithm 10.1 as our starting
point, we obtain the procedure described in Algorithm 13.2 as our new algorithm. Blue
lines indicate modifications to the original algorithm, and computing the set of nearby
filter vectors in Lines 5 and 11 is done using Algorithm 13.1.

174 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

Algorithm 13.2 Nguyễn and Vidick’s sieve with hypercone LSF

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ · R

1: Initialize an empty list Lm+1

2: Sample Ĉ ⊂ L ∩ {x ∈ Rd : ‖x‖ > γ · R} of size poly(d) · (4/3)d/2

3: Sample m random subcodes C1, . . . ,Cm
4: for eachw ∈ Ĉ do
5: Compute the set Fw,β of all β-close filters tow
6: Addw to all β-close filters f ∈ Fw,β

7: for each v ∈ L \ Ĉ do
8: if ‖v‖ 6 γR then
9: Add v to the list L ′

10: else
11: Compute the set Fv,α of all α-close filters to v
12: Obtain the set of candidates C =

⋃
f∈Fv,α

Bf

13: for eachw ∈ C do
14: if ‖v−w‖ 6 γ · R then
15: Add v−w to the list L ′

16: Continue the loop over “v ∈ L \ Ĉ”

13.4.1 – High-dimensional intuition (α = β). We again provide a first basic esti-
mate of the optimal asymptotic complexities and parameter choices, based on the as-
sumption that everything in high dimensions is orthogonal (except for nearby pairs of
vectors). This means that we can simply substitute θ1 = π

3 and θ2 = π
2 in earlier expres-

sions. This leads to a greatly simplified analysis, with the following conclusion.

Proposition 13.12. Assuming that non-reducing vectors are always pairwise orthogonal,
the NV-sieve with hypercone filtering with parameters α = β = 1

5

√
5, k = 1 and t =

(15/11)d/2+o(d) ≈ 20.2238d+o(d) heuristically solves SVP in time and space 20.2703d+o(d).
By varying the value of α and t, we further obtain the trade-off between the space and time
complexities indicated by the straight dashed line in Figure 13.3.

Proof. If ‘random angles’ are 90◦, then we can substitute θ1 = π
3 and θ2 = π

2 into
previous expressions for various parameters. Substituting n = (4/3)d/2+o(d) into α0

in (13.23), we obtain α0 = 1
5

√
5+ o(1), and the optimal choice for α = β then becomes

α = β = 1
5

√
5+o(1). Substituting this choice into the expressions for ρ and ρt of (13.2),

we obtain ρ = log(12/11)/ log(4/3) and ρt = log(15/11)/ log(4/3). This leads to time
and space complexities of n1+ρ = (12/11)d/2+o(d)

Note that the estimated exponent ρ = log(12/11)/ log(4/3) ≈ 0.30 and estimated
time complexity 20.2703d+o(d) are better than the same estimates ρ = 1

3 ≈ 0.33 and a
time complexity of 20.2767d+o(d) for hypercone and cross-polytope LSH. So if this first
estimate is better, then we might expect that the actual complexities are also better.

13.4. THE NGUYEN–VIDICK SIEVE WITH HYPERCONE LSF 175

Tim
e =

Sp
ac

e

●●

●●
●●

20.20 d 20.25 d 20.30 d 20.35 d 20.40 d 20.45 d 20.50 d

20.25 d

20.30 d

20.35 d

20.40 d

20.45 d

20.50 d

Figure 13.3: The asymptotic time-memory trade-off for hypercone filtering (blue) compared to the asymp-
totic complexities of other sieving algorithms considered in previous chapters (red), assuming that α = β.
The dashed line corresponds to the preliminary estimate under the assumption that distant vectors are always
orthogonal to the target vector.

13.4.2 – Solving SVP in time and space 20.2925d+o(d) (α = β). We now continue
with the actual cost analysis of sieving with hypercone LSH, still assuming that α = β.
We will perform the analysis differently than in previous chapters, where we make use of
one crucial property that did not hold in previous chapters: each filter bucket covers an
equally big region of the space. Hypercones may intersect, but in that case we just add
vectors to several buckets. This is different from hypercone hashing where regions be-
come progressively smaller; hyperplane hashing where non-orthogonal hyperplanes may
not equally divide the space in regions; and cross-polytope hashing, where the combina-
tion of k hash functions may again make some hash buckets significantly smaller or larger
than others. This means that the simpler analysis presented below does not apply to the
techniques considered in previous chapters.

Theorem 13.13. The Nguyễn–Vidick sieve with hypercone LSF with parameters

α = β =
1
2

, k = 1, t = (3/2)d/2+o(d), (13.37)

heuristically solves SVP in time and space (3/2)d/2+o(d) ≈ 20.292d+o(d). By varying α ∈
(0, 1), we further obtain the trade-off indicated by the blue curve in Figure 13.3.

176 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

Proof. We fix k = 1, so that each bucket covers an equally-sized part of Rd, and each
vector is on average contained in t · Cd(α) buckets, we can conclude that there will be
in total t · n · Cd(α) entries in the hash filters, and each filter bucket will therefore have
Õ(n · Cd(α)) occupied entries. This is using the assumption that the normalized list
vectors follow a uniformly random distribution on the sphere.

This means that the cost of answering a query v is: (i) compute the Õ(t · Cd(α))
relevant filters for v; and (ii) compare v to all other Õ(t · Cd(α) · n · Cd(α)) vectors in
the same buckets. The cost of insertions in the relevant filters is Õ(t · Cd(β)) for each
vector, matching the query costs as α = β. Overall, this leads to a total time complexity
of Õ(n2 · t · Cd(α)2) and a space complexity of Õ(n · t · Cd(α)). The optimal choice
minimizing the time complexity is α = 1

2 so that Cd(α) ∝ 1
n

and the complexities are as
stated. Varying α ∈ (0, 1

2) further leads to the curve in Figure 13.3.

Note that α = α0 = 1
2 and n2/d = 4

3 in (13.23) corresponds to θ2 = arccos(1
7) ≈

0.45π, which may be compared with e.g. the dominant angle θ∗2 ≈ 0.43π in Corol-
lary 11.7 and θ∗2 ≈ 0.46π in Corollary 10.9. The closer θ∗2 is to π

2 , the closer the actual
complexity is to the preliminary estimate under the assumption that θ2 = π

2 .

13.4.3 – Reducing the space complexity with provable probing (α 6= β). For α =
β we saw in Figure 13.3 that we obtain slightly better time and space complexities than
with hypercone LSH. To improve the practical space/time trade-off, for locality-sensitive
hashing we saw we can use probing, but only in few cases [Kap15, Pan06] did this lead
to provable improvements in the exponent; for cross-polytope hashing for instance, it is
unclear how the proposed probing method from Section 12.4.3 affects the asymptotics.

By taking α 6= β, we can trade time for memory as well, while still obtaining provable
guarantees on the exponents. Taking the query parameter α smaller than the storage
parameter β, we may even achieve a quasi-linear space complexity while still achieving
better query complexities. One can achieve an optimal query complexity (without in-
creasing the memory) by taking α = 1

4 and β = 1
2 . Indeed, if we work out the costs for

this parameter choice, we obtain a space complexity of (4/3)d/2+o(d) ≈ 20.208d+o(d),
and a time complexity of only (5/3)d/2+o(d) ≈ 20.368d+o(d). Note that this strict speed-
up (rather than a trade-off) applies to the GaussSieve as well. Fixing β = 1

2 and varying
α ∈ [0, 1

2] we obtain the trade-off curve given in Figure 13.1. This is indeed the best we
can do; other choices α,β ∈ [0, 1] all lead to points above and to the right of this curve.

13.4.4 – Solving SVP in time 20.2925d+o(d) and space 20.2075d+o(d). Finally, similar
to previous chapters, we see that for the Nguyễn–Vidick sieve we can obtain the improved
time complexities on the various trade-off curves without increasing the memory, by pro-
cessing the hash tables sequentially. In the case of filtering the parallelization is similar
but not quite the same, as the number of filters t = Õ(nρt) is larger than before; process-
ing all filters one by one would lead to a minimum time complexity of Õ(t ·n) > Õ(n2).
The whole point of the filtering approach was that we used list-decoding to find relevant
filters quickly, so that overall the cost of processing one filter is subexponential in d.

Fortunately, with a minor modification we can still apply the same ideas here. Instead
of processing all t filters sequentially, we partition the t filters C into nρ groups of size
t/nρ, and then process one subset of filters first. Repeating the procedure of processing a
subset of filters nρ times, we ultimately obtain the desired quasi-linear space complexity,

13.4. THE NGUYEN–VIDICK SIEVE WITH HYPERCONE LSF 177

Algorithm 13.3 Nguyễn and Vidick’s sieve with hypercone LSF, space-efficient

Require: An input list L of (4/3)d/2+o(d) vectors of norm at most R
Ensure: The output list L ′ has (4/3)d/2+o(d) vectors of norm at most γ · R

1: Initialize an empty list L ′

2: Sample Ĉ ⊂ L ∩ {x ∈ Rd : ‖x‖ > γ · R} of size poly(d) · (4/3)d/2

3: Sample m random subcodes C1, . . . ,Cm
4: for each c ′ = (c1, . . . , cu) ∈ C1 × · · · × Cu do
5: for eachw ∈ Ĉ do
6: Compute the set F(c′)

w,β of all β-close filters tow with prefix c ′

7: Addw to all filters f ∈ F
(c′)
w,β

8: for each v ∈ L \ Ĉ do
9: if ‖v‖ 6 γR then

10: Add v to the list L ′

11: else
12: Compute the set F(c′)

v,α of all α-close filters to v with prefix c ′

13: Obtain the set of candidates C =
⋃
f∈F(c′)

v,α
Bf

14: for eachw ∈ C do
15: if ‖v−w‖ 6 γR then
16: Add v to the list L ′

17: Continue the loop over “v ∈ L \ Ĉ”

while the time complexity hardly increases compared to processing all filters simultane-
ously; the overhead of list-decoding becomes slightly larger as for each vector we now go
through the enumeration tree multiple times (searching for code words in the subset of
the code that we are dealing with), but in the end this overhead remains subexponential.

Theorem 13.14. The space-efficient Nguyễn–Vidick sieve with hypercone filtering with
α = β = 1

2 , k = 1, t = (3/2)d/2+o(d), and γ → 1 heuristically solves SVP in time
(3/2)d/2+o(d) ≈ 20.2925d+o(d) and space (4/3)d/2+o(d) ≈ 20.2075d+o(d). These complex-
ities are indicated by the leftmost blue point in Figure 13.1.

Although arbitrary partitions of the code C achieve these asymptotic complexities,
perhaps the most efficient way to divide the code into subcodes in practice is to fix a
prefix c ′ = (c1, . . . , cu) ∈ C1 × · · · × Cu and let one subcode correspond to one prefix.
Then, processing these parts of the code sequentially corresponds to going through all
possible prefixes, and for each prefix considering a partial enumeration tree of depthm−u
rather thanm. To guarantee that the number of prefixes is nρ = (9/8)d/2+o(d), we take
u = log(9/8)

log(3/2) ·m ≈ 0.2905 ·m. Note that there are tu/m code words C1×· · ·×Cm, which

combined with the expression for t shows there are (9/8)d/2+o(d) prefix code words in
C1×· · ·×Cu, and (4/3)d/2+o(d) suffixes in Cu+1×· · ·×Cm for each prefix. The result
of this slightly more practical partitioning method is Algorithm 13.3.

178 CHAPTER 13. HYPERCONE LOCALITY-SENSITIVE FILTERING

×
×
×
×
×
× ×

×
× ×

×

×

×
×
×
×
×
×
×
×
×
× ×

×
×
×

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

▲

▲

▲

▲

▲

▲

▲

▲

★

★

★

★

★

★

×
●

▲
★

50 55 60 65 70 75
10

100

1000

104

105

Figure 13.4: The running time of the GaussSieve (red), the GaussSieve with hyperplane hashing (HashSieve,
blue), and the GaussSieve with hypercone filtering with α = 0.44 and m = 3 (orange) and with α = 0.47
andm = 4 (green). Points indicate experimental data, lines indicate least-squares fits of the form 2ad+b for
constants a,b. For simplicity we have only performed experiments for dimensions d which are multiples of
the number of blocksm.

13.5 — The GaussSieve with hypercone LSF

To show the practicability of the proposed algorithm, let us finally present results
of implementing the filtering approach in the GaussSieve algorithm [MV10b]. We ran
experiments on an Intel Quad-Core(TM) Q9550 at 2.83GHz with 4GB RAM. Our imple-
mentation is not vectorized or parallelized. As input bases, we used LLL-reduced bases of
the SVP challenge [SG15]. We chose α = β ∈ {0.44, 0.47} as α = β = 1

2 is only optimal
asymptotically and appears to be slightly worse in low dimensions. Figure 13.4 compares
the running time of this algorithm with the GaussSieve and the HashSieve (Chapter 10).

Observe that the acceleration matches predictions from the theoretical analysis. For
example, for the asymptotically suboptimal choice of α = 0.44, theory predicts an accel-
eration of 20.10d+o(d), while in practice we see a speed-up from 20.52d−21 to 20.40d−16.
The polynomial overhead further appears to be small, as this method outperforms the
GaussSieve around dimension 50, and the HashSieve around dimension 65.

CHAPTER 14

Effects of quantum search

14.1 — Overview

Context. In the previous chapters we studied sieving algorithms for finding shortest
vectors in lattices, keeping in mind that the main application of these results is estimat-
ing the hardness of SVP in high dimensions, which is critical for accurately choosing
parameters in lattice-based cryptography. Underestimating the computational hardness
of SVP would lead to parameter choices which are insecure against cryptographic ad-
versaries, while overestimating the hardness would lead to choosing the parameters too
large, leading to unnecessarily inefficient cryptographic primitives. Understanding what
a cryptographic adversary might do and how much effort it would cost him to break a
scheme is ultimately the best way to defend against such adversaries.

One of the main reasons that lattice-based cryptography has been intensively studied
in the past few decades, is due to the rise of quantum computers, making many cur-
rently deployed cryptographic schemes insecure. Over the last two decades, quantum
algorithms have been developed to e.g. break public-key cryptography based on inte-
ger factorization or the discrete logarithm problem [Sho97], break the principal ideal
problem in real quadratic number fields [Hal02], and provide subexponential attacks
for some systems based on elliptic curve isogenies [CJS14]. Besides these applications
in cryptography, quantum algorithms have also been invented to speed up exhaustive
searching [BBHT98, Gro96], counting roots [BHMT02] and (with appropriate assump-
tions about the computing architecture) finding collisions and claws [Amb04, BHT98,
BDH+01], among many other quantum algorithmic speed-ups [CvD10,Mos09,SM12].

Quantum algorithms and lattice cryptography. Quantum algorithms have also
been studied in the context of lattices (see e.g. [AR03, CGS14, Kup05, Kup13, Lud03,
Reg04a,Reg04b]), but until now hard lattice problems have been able to withstand quan-
tum attacks: there are no known quantum algorithms which would solve hard lattice
problems in subexponential time. Lattice-based cryptography is still considered one of
the main candidates for post-quantum cryptography [BBD09, BL15b]: cryptographic sys-
tems that are secure in a world where large-scale quantum computers are a reality.

For choosing parameters for lattice-based cryptographic primitives in a post-quantum
world, it is crucial not only to study whether quantum algorithms can completely break
these schemes, but also to study how quantum techniques affect the complexities of ex-
isting classical algorithms for solving these problems. Can quantum algorithms be used

?This chapter is based on results from [LMvdP13,LMvdP15] extended with results from [BL15a,BDGL16].

180 CHAPTER 14. EFFECTS OF QUANTUM SEARCH

to speed up existing SVP algorithms? Should parameters be chosen differently to resist
quantum attacks? How do quantum algorithms affect the computational complexity of
current SVP algorithms? Even if the resulting quantum algorithms have a time complex-
ity exponential in d, reducing the constant in the exponent would mean that security
estimates would have to be adjusted for post-quantum settings.

Results. In this chapter we take another look at the sieving algorithms from Chap-
ters 8–13, and we analyze how the celebrated algorithm of Grover for faster exhaustive
searching [Gro96] affects the complexities of each of these algorithms. Grover’s quan-
tum search algorithm considers the following problem. Given a list L of length n and a
function f : L → {0, 1} such that the number of elements e ∈ L with f(e) = 1 is small,
construct an algorithm which, given L and f as input, returns an e ∈ L with f(e) = 1, or
determines that with high probability no such e exists. We assume for simplicity that f
can be evaluated on any particular element of L in unit time.
Classical algorithm. The natural way to find such an element is to go through the whole

list, until a special element is found. This takes on averageO(n) time which is also
optimal: no classical algorithm can find such an element in less than Ω(n) time.

Quantum algorithm. Using Grover’s quantum search algorithm [BBHT98, BHMT02,
Gro96], we can find a special list element in time O(

√
n). This is essentially opti-

mal, as any quantum algorithm needs at least Ω(
√
n) evaluations of f [BBBV97].

Performing the various optimizations again, taking into account that the cost of
searching a list of size nmay potentially be reduced from O(n) to O(

√
n), we obtain the

results given in Table 14.1 and Figure 14.1. Combining leveled sieving and the overlat-
tices approach with quantum search does not lead to better complexities than combining
the Nguyễn–Vidick sieve algorithm with quantum search, while for NNS techniques con-
sidered in the previous chapters we do get further improvements. The best asymptotic
time complexity for solving SVP in high dimensions is obtained by combining hypercone
filtering with quantum search, and based on these results we estimate the quantum hard-
ness of SVP in dimension d to be (13/9)d/2+o(d) ≈ 20.265d+o(d), improving upon the
classical time complexity of (3/2)d/2+o(d) ≈ 20.292d+o(d) in dimension d. These results
may serve as a guide for estimating the quantum hardness of SVP in high dimensions.

Note on the RAM model. For both the classical and the quantum versions of these
search algorithms, we assume a RAM model of computation where the j-th entry of the
list L can be looked up in constant or polylogarithmic time. In the case that L is a virtual
list where the j-th element can be computed in time polynomial in the length of j (thus
polylogarithmic in the length of the list L), then look-up time is not an issue. When
L is indeed an unstructured list of values, for classical computation, the assumption of
a RAM-like model has usually been valid in practice. However, there are fundamental
reasons for questioning it [Ber09], and there are practical computing architectures where
the assumption does not apply. In the case of quantum computation, a practical RAM-
like quantum memory (e.g. [GLM08]) looks particularly challenging, especially for first
generation quantum computers. Some authors have studied the limitations of quantum
algorithms in this context [Ber09,GR04].

In this chapter, we consider conventional classical RAM memories for the classical
algorithms, and RAM-like quantumly addressable classical memories for the quantum
search algorithms. This is both a first step for future studies in assessing the impact of

14.2. QUANTUM SEARCH SPEED-UPS FOR SIEVING 181

Table 14.1: A comparison of the time and space complexities of heuristic sieving algorithms for solving SVP,
both classically and quantumly. The given complexities for high-level sieving are conjectured (see Chapter 9),
other results can be proven under certain heuristic assumptions.

Algorithm Classical search Quantum search
Name [References] log2(Time) log2(Space) log2(Time) log2(Space)

H
eu

ri
st

ic
SV

P

Nguyễn–Vidick sieve [NV08] 0.415d 0.208d 0.311d 0.208d
GaussSieve [MV10b] 0.415d 0.208d 0.311d 0.208d
2-level sieve [WLTB11] 0.384d 0.256d 0.311d 0.208d
3-level sieve [ZPH13] 0.3778d 0.283d 0.311d 0.208d
Overlattice sieve [BGJ14] 0.3774d 0.293d 0.311d 0.208d
High-level sieving (Chapter 9) 0.3774d 0.293d 0.311d 0.208d
Hyperplane LSH (Chapter 10) 0.337d 0.208d 0.286d 0.208d
Hypercone LSH (Chapter 11) 0.298d 0.208d 0.268d 0.208d
Cross-polytope LSH (Chapter 12) 0.298d 0.208d 0.268d 0.208d
Hypercone filtering (Chapter 13) 0.292d 0.208d 0.265d 0.208d

more practical quantum architectures, and also represents a more conservative approach
in determining parameter choices for lattice-based cryptographic primitives that are pre-
sumed to be resistant against the potential power of quantum algorithmic attacks.

Outline. The outline of this chapter is as follows. In Section 14.2 we revisit the sieving
algorithms from the previous chapters, and describe the effects of quantum search on
these algorithms, showing that nearest neighbor search techniques can potentially be
combined with quantum search to obtain even better complexities for solving SVP. In
Section 14.3 we then give a brief discussion of how quantum searching affects other SVP
algorithms, such as sieving algorithms with provable guarantees, and enumeration.

14.2 — Quantum search speed-ups for sieving

14.2.1 – The Nguyễn–Vidick sieve. As described in previous chapters, the basic sieve
of Nguyễn and Vidick [NV08] starts by generating a big list L of n = (4/3)d/2+o(d) ≈
20.208d+o(d) random lattice vectors, and then repeatedly applies a sieve to it to obtain
shorter lists L ′ of shorter lattice vectors. The number of applications of this sieve is poly-
nomial in d, and the bottleneck in the time (and space) complexity comes from the cost
of one application of the sieve.

The sieving step basically consists of taking all n vectors in L, and looking at almost
all pairwise difference vectors v −w with v,w ∈ L. In other words, for each v ∈ L we
search for vectors w ∈ L such that v −w is short. For a fixed v, this defines a function
f which maps almost all vectors w ∈ L to 0 and a small subset of the vectors to 1. Note
that Grover’s algorithm can handle multiple solutions efficiently.

Classical complexities. Using a classical search routine to find nearby vectors, the
Nguyễn–Vidick sieve has a time complexity quadratic in the initial list size, Õ(n2). To-
gether with the polynomial number of iterations that need to be performed, this leads
to time and space complexities of (4/3)d+o(d) ≈ 20.415d+o(d) and (4/3)d/2+o(d) ≈
20.208d+o(d) respectively.

182 CHAPTER 14. EFFECTS OF QUANTUM SEARCH

Tim
e =

Sp
ac

e

●●

●●
●

●

●●

●●

●●

●●

●●

20.20 d 20.25 d 20.30 d 20.35 d

20.25 d

20.30 d

20.35 d

20.40 d

20.45 d

Figure 14.1: The classical space/time trade-offs of various heuristic sieving algorithms from previous chapters
(red), and the trade-offs obtained with quantum search applied to these algorithms (blue). For nearest-neighbor
techniques, points on the trade-off curves can be turned into a point with the same time complexity but with
a space complexity of only 20.208d+o(d) using the ideas of e.g. Algorithm 10.3. Recall that turning a trade-off
into a speed-up only works for the Nguyễn–Vidick sieve and not for the GaussSieve.

Quantum complexities. If we use quantum searching to find nearby vectors for a given
vector v ∈ L, we may potentially reduce the time complexity of a single search to Õ(

√
n).

In total, this leads to time and space complexities of (4/3)3d/4+o(d) ≈ 20.311d+o(d) and
(4/3)d/2+o(d) ≈ 20.208d+o(d) respectively.

In other words, applying quantum search to Nguyễn and Vidick’s sieve algorithm leads

14.2. QUANTUM SEARCH SPEED-UPS FOR SIEVING 183

to a 25% decrease in the asymptotic exponent of the runtime.

14.2.2 – The GaussSieve. Micciancio and Voulgaris’ GaussSieve algorithm [MV10b]
does not have provable bounds on the time complexity, but this algorithm is com-
monly conjectured to have similar asymptotic complexities as the Nguyễn–Vidick sieve:
a quadratic complexity in the list size, which is also estimated to be of size at most
n ≈ 20.208d+o(d). Using a classical search we estimate the complexities to be the same
as the Nguyễn–Vidick sieve, and with quantum searching that would still be the case,
with conjectured quantum time and space complexities of 20.311d+o(d) and 20.208d+o(d)

respectively.

14.2.3 – The 2-level sieve. To improve upon the time complexity of the algorithm of
Nguyễn and Vidick, Wang–Liu–Tian–Bi [WLTB11] introduced a further trade-off between
the time complexity and the space complexity. Their algorithm uses two layers of centers
of sizes n1 and n2 as described in Chapter 9 (n1 outer lists, each of size n2) and for a
new vector we first find a nearby outer center point, and then search the corresponding
list of inner centers for a nearby inner center point.

Classical complexities. The classical space complexity of this algorithm is bounded by
Õ(n1n2), while the time required to find a shortest vector is at most Õ(n1n2(n1 +n2)):
for each of the n1n2 vectors, we perform a brute-force search over the outer list (n1) and
then the inner list (n2). Optimizing the constantsγ1 andγ2 leads to (γ1,γ2) ≈ (1.093, 1),
with an asymptotic time complexity 20.384d+o(d) and a space complexity 20.256d+o(d).

Quantum complexities. By using the quantum search speed-up for searching the two
lists of centers, the time complexity is reduced to Õ(n1n2(

√
n1 +

√
n2)), while the space

complexity remains the same at Õ(n1n2). Re-optimizing the constants for a minimum
quantum time complexity leads to (γ1,γ2)→ (

√
2, 1), leading to the same time and space

complexities as the quantum-version of the algorithm of Nguyễn and Vidick. The “trade-
off” that can be obtained for this algorithm overlaps with the top blue curve in Figure 14.1,
which also shows that the time complexity increases with the space complexity, and so
there is nothing to be gained compared to Nguyễn and Vidick’s basic sieve.

14.2.4 – The 3-level sieve. To further improve upon the classical time complexities
of the 1- and 2-level sieves, Zhang–Pan–Hu [ZPH13] analyzed the 3-level sieve, with a
further trade-off between the time and space complexity as described in Chapter 9. This
algorithm uses three layers of centers, of respective sizes n1,n2,n3.

Classical complexities. The classical time complexity of this algorithm is given by
Õ(n1n2n3(n1 + n2 + n3)), with a space complexity of Õ(n1n2n3). Optimizing the con-
stants γ1,γ2,γ3 with a classical search leads to (γ1,γ2,γ3) ≈ (1.140, 1.067, 1), with an
asymptotic time complexity of 20.378d+o(d) and a space complexity of 20.283d+o(d).

Quantum complexities. Replacing the classical search with a quantum search subrou-
tine, the time complexity is potentially reduced to Õ(n1n2n3(

√
n1 +

√
n2 +

√
n3)), with

the same space complexity as in the classical case. Re-optimizing the constants for a mini-
mum time complexity leads to (γ1,γ2,γ3) ≈ (

√
2,
√

2, 1), again leading to the same time
and space complexities as the quantum-version of the algorithm of Nguyễn and Vidick. As
the hidden polynomial factors of the 3-level sieve are much larger than for 1-level sieving,

184 CHAPTER 14. EFFECTS OF QUANTUM SEARCH

we again observe that with quantum searching there is no point in using multiple layers.

14.2.5 – The overlattice sieve. The overlattice sieve [BGJ14] works by decomposing
the lattice into a sequence of overlattices such that the lattice at the bottom corresponds
to the challenge lattice, whereas the lattice at the top corresponds to a lattice where enu-
merating short vectors is easy due to the almost orthogonal basis vectors. The algorithm
begins by enumerating many short vectors in the top lattice and then iteratively moves
down through the sequence of lattices by combining short vectors in the overlattice to
form short vectors in the lattice directly below it in the sequence.

Considering the computational costs of this algorithm, at any time the algorithm deals
with βd vectors that are divided into αd buckets with on average βd/αd vectors per
bucket. These buckets are divided into pairs such that any vector from a bucket and any
vector from its paired bucket combine into a lattice vector in the sublattice. Therefore,
exactly β2d/αd combinations need to be made in each iteration. For large d there is the
condition on α,β that β

√
1 − α2/4 > 1 + o(1), which means that in high dimensions

the best choice is to take β ≈ 1/
√

1 − α2/4.

Classical complexities. The classical running time of this algorithm is Õ(β2d/αd), as
for each of Õ(βd) vectors we must go through a bucket containing Õ(βd/αd) vectors.
The space complexity of this algorithm is Õ(βd) vectors. Optimizing α and β for the best
time complexity gives α =

√
4/3 and β =

√
3/2 for an asymptotic time complexity of

20.3774d+o(d) and a space complexity of 20.2925d+o(d).

Quantum complexities. Using quantum search to search for suitable pairs of vectors,
the running time may be reduced to Õ(β3d/2/αd/2), as for each of the βd vectors we
now do a search over the other vectors in time

√
βd/αd. The quantum space complexity

is still given by βd. Optimizing the quantum time complexity, we obtain α→ 1 and β =√
4/3, which gives a quantum time complexity of 20.311d+o(d) and a space complexity of

20.2075d+o(d). For general α, Figure 14.1 sketches the “trade-off” and shows that indeed
both the time and the space are increasing with α. So again, with quantum searching this
algorithm is not better than the quantum Nguyễn–Vidick sieve.

14.2.6 – High-level sieving. Chapter 9 discusses leveled sieving with even more lay-
ers of centers, and how the classical time and space complexities behave as the number
of levels increases. Although rigorously proving that high-level sieving does not lead to
better results seems hard, we argued that based on the results for low-level sieving, we
may predict what the complexities for high-level sieving are. In particular, all classical
trade-offs for leveled sieving were conjectured to overlap with the overlattices approach
of Becker–Gama–Joux [BGJ14].

With 2- and 3-level sieving, the quantum trade-offs also overlap with the quantum
overlattice trade-off curve, and a natural conjecture would be to say that with quantum
searching, also the asymptotic complexities of higher level-sieving will lie on the top
blue curve given in Figure 14.1. As we further saw that quantum search applied to the
overlattices approach does not lead to better results compared to the Nguyễn–Vidick sieve,
we therefore also conjecture that high-level sieving with quantum search does not lead
to any useful trade-offs compared to the basic Nguyễn–Vidick sieve.

14.2. QUANTUM SEARCH SPEED-UPS FOR SIEVING 185

14.2.7 – Hyperplane LSH. Using hyperplane LSH as described in Chapter 10, the
search for nearby vectors can be sped up (classically), at the cost of extra memory for
the GaussSieve, and without increasing the memory for the Nguyễn–Vidick sieve. With a
number of hash tables t = 2ctd+o(d) and a parameter α chosen as

α =
−1
cn

[
ct + max

θ∈(π3 ,π2)

{
log2(sin θ) +

ct

γ2
log2

(
1 −

θ

π

)}]
, (14.1)

we are able to guarantee a collision probability for distant vectors of p∗2 = n−α+o(1)

while guaranteeing that nearby vectors are almost always found. For one target vector,
there are roughly n1−α lattice vectors which collide with this vector in one of the hash
tables.

Classical complexities. With a classical search of the list of colliding vectors, the search
for nearby vectors costs n1−α time. With a proper balancing of the parameters, this leads
to the trade-off curves illustrated in e.g. Figures 10.1 and 14.1. In particular, choosing
ct ≈ 0.1290 leads to the optimal asymptotic time complexity of 20.337d+o(d).

Quantum complexities. Using quantum search on the set of colliding vectors, we can
further reduce the time complexity. The search of the list of candidates can potentially
be done in time

√
n1−α, which leads to a total number of comparisons of Õ(n(3−α)/2)

with a number of hash computations which is still Õ(t · n). Performing the numerical
optimization of the parameters again, this leads to an optimum at ct ≈ 0.0784 with
k ≈ 0.1341d and a quantum time complexity for solving SVP of 20.286d+o(d). So in this
case we do get an improvement over the Nguyễn–Vidick sieve.

Note that it is possible to obtain a trade-off between the quantum time and space
complexities, by choosing ct ∈ [0, 0.0784]. Figure 14.1 shows the resulting trade-off,
and how it compares with other classical and quantum trade-offs for sieving.

14.2.8 – Hypercone LSH. As described in Chapter 11, using hypercone LSH rather
than hyperplane LSH leads to even better asymptotic classical time and space complex-
ities. Similar to sieving with hyperplane LSH, this algorithm stores n vectors in t hash
tables, and the number of colliding vectors in one or more of the hash tables is given by
n−α with α now defined as

α =
−1
cn

[
ct + max

θ∈(π3 ,π2)

{
log2(sin θ) − 3ct tan2 θ

2

}]
. (14.2)

Classical complexities. With a classical search of the list of colliding vectors, the search
for nearby vectors takes time n1−α. Varying the parameter ct, this leads to the trade-off
curve in Figure 14.1. To minimize the classical time complexity, we choose ct ≈ 0.0896
to obtain a time complexity of 20.2972d+o(d).

Quantum complexities. Substituting the quantum search subroutine for the search
over colliding vectors, we can potentially reduce the cost of comparing vectors to
Õ(n(3−α)/2), while again the number of hash computations remains the same at Õ(t ·n).
For varying ct, this leads to a different trade-off curve illustrated in Figure 14.1. Opti-
mizing for the quantum time complexity, we set ct ≈ 0.0595 so that the costs of hash-
ing and comparing vectors are balanced, and the quantum time complexity becomes

186 CHAPTER 14. EFFECTS OF QUANTUM SEARCH

20.2671d+o(d). So again, quantum search can potentially be combined with locality-
sensitive hashing in a meaningful way to obtain even better time complexities.

14.2.9 – Cross-polytope LSH. For cross-polytope LSH, we saw in Chapter 12 that we
essentially obtain the same asymptotic expressions as for hypercone LSH. The classical
trade-off curve overlaps with the trade-off curve for hypercone LSH, and unsurprisingly if
we apply quantum search to the cross-polytope sieve, we again obtain a trade-off which
coincides with the quantum trade-off curve for hypercone LSH depicted in Figure 14.1.
So optimizing for the time complexity, we should again take ct ≈ 0.0595 to obtain an
asymptotic time complexity for solving SVP in dimension d of 20.2671d+o(d).

14.2.10 – Hypercone LSF. Finally, we obtained the best classical time complexity for
solving SVP in high dimensions using hypercone filtering. In this algorithm there are two
parameters α,β to choose, where a small α corresponds to querying many filters to find
nearby vectors, and a small β corresponds to storing vectors in many filters. We have a
number of filters t = 2ctd+o(d), a number of vectors n = 2cnd+o(d), and a filter collision
probability c(x) = 2cxd+o(d) for x ∈ {α,β}, as described below:

ct = − 1
2 log2

(
1 − 4

3

(
α2 − αβ+ β2

))
, cx = 1

2 log2

(
1 − x2

)
. (14.3)

Classical complexities. To find nearby vectors, we take a vector v, compute its rel-
evant filters (cost 2(ct+cα)d+o(d)), and search for other vectors in the same buckets
(2(cn+cβ)d+o(d) vectors in each of these buckets). Finally, an insertion/deletion of a
vector in the right filters takes time 2(ct+cβ)d+o(d). In total, the classical time complex-
ity is 2ctimed+o(d) and the space complexity is 2cspaced+o(d) with

ctime = max
{
cn + ct + cα, 2cn + ct + cα + cβ, cn + ct + cβ

}
, (14.4)

cspace = max
{
cn + ct + cβ, cn

}
. (14.5)

Optimizing for the time, this leads to α = β = 1
2 with an asymptotic time complex-

ity of (3/2)d/2+o(d) ≈ 20.292d+o(d), while the optimal trade-off for varying α and β is
achieved by varyingα ∈ [1

4 , 1
2] and fixingβ = 1

2 , leading to the curve in Figure 14.1. With-
out increasing the space complexity in the GaussSieve, we can still obtain an asymptotic
improvement in the time complexity by taking α = 1

4 and β = 1
2 , with time complexity

(5/3)d/2+o(d) ≈ 20.368d+o(d).

Quantum complexities. With quantum search applied to the list of candidate nearby
vectors, the cost of comparing a vector to other vectors colliding in one of the filters
is potentially reduced from 2(ct+cn+cα+cβ)d+o(d) to 2(ct+cn+cα+cβ)d/2+o(d). So the
quantum time and space exponents qtime and qspace are now given by

qtime = max
{
cn + ct + cα, 1

2 (3cn + ct + cα + cβ), cn + ct + cβ
}

, (14.6)

qspace = max
{
cn + ct + cβ, cn

}
. (14.7)

Re-optimizing the complexities [Duc15], we see that the best quantum time complexity is
obtained by taking α = β = 1

4

√
3, with time and space complexities of (13/9)d/2+o(d) ≈

20.2653d+o(d). Without increasing the memory, the best time complexity is obtained by
setting β = 2α and α = 1

16

√
58 − 6

√
65 = 1

16 (3
√

5 +
√

13). This leads to a quantum

14.3. OTHER ALGORITHMS 187

Table 14.2: A comparison of the time and space complexities of sieving algorithms with provable guarantees,
and other SVP methods such as enumeration. The top rows all describe provable algorithms for SVP, while the
last row describes provable complexities for solving approximate SVP (SVPδ) with large approximation factors
δ with sieving. Details on the quantum search exponents can be found in [LMvdP13,LMvdP15].

Algorithm Classical search Quantum search
Name [References] log2(Time) log2(Space) log2(Time) log2(Space)

Pr
ov

ab
le

SV
P

Enumeration algorithms [FP85,Kan83] Ω(d logd) O(logd) Ω(d logd) O(logd)
AKS-sieve [AKS01b,NV08,MV10b,HPS11] 3.398d 1.985d 2.672d 1.877d
ListSieve [MV10b] 3.199d 1.327d 2.527d 1.351d
Voronoi cell algorithm [AEVZ02,MV10a] 2.000d 1.000d 2.000d 1.000d
AKS-sieve-birthday [HPS11,PS09] 2.648d 1.324d 1.986d 1.324d
ListSieve-birthday [PS09] 2.465d 1.233d 1.799d 1.286d
Discrete Gaussian sampling [ADRSD15] 1.000d 0.500d 1.000d 0.500d

(SVPδ) ListSieve-birthday [LWXZ11,WLW15] 0.802d 0.401d 0.602d 0.401d

time complexity of 2qtimed+o(d) with qtime =
1
2 log2(1+

√
65)− 1

2 log2 6 ≈ 0.2975, where
the space complexity in this case is unchanged at (4/3)d/2+o(d) ≈ 20.208d+o(d). These
results, and the trade-off for general α and β, are again shown in Figure 14.1. So also
quantumly, the best results are obtained with hypercone LSF.

14.3 — Other algorithms

Besides the (heuristic) sieving algorithms considered above, various other (provable)
SVP algorithms have also been studied over the last decade, for which quantum searching
might also lead to a significant speed-up. We will go through these different methods
below, and sketch how quantum searching affects their complexities.

14.3.1 – Provable sieving. Sieving algorithms with provable guarantees of finding
shortest vectors on arbitrary lattices (rather than relying on a heuristic assumption on
the distribution of lattice points) have also been studied extensively [AKS01b, HPS11,
MV10b, NV08, PS09, Vou11]. These algorithms use perturbed versions of lattice vectors
rather than the actual lattice vectors in the sieves, which roughly means that a small
amount of random noise is added to each lattice point before putting it in the sieve.
Without assumptions on the distribution of points in space, this allows us to prove that
the event of finding a vector which after reduction with the list results in the vector 0,
is not much more likely to occur than the event of finding a shortest lattice vector after
reducing this perturbed vector with the list. This allows us to prove that the size of the list
will continually increase with non-negligible probability. As there are upper bounds on
how many vectors can be in the list (similar to the kissing constant, but taking into account
the size of the noise vectors) this proves that eventually we will find such collisions of 0,
and so with high probability we will eventually find a shortest vector in our list.

188 CHAPTER 14. EFFECTS OF QUANTUM SEARCH

Classical complexities. Different algorithms have been considered, all exploiting this
proof strategy, leading to slightly different asymptotics on the time and space complexities
of provable sieving. The best provable sieving method to date in high dimensions, the
ListSieve-birthday algorithm [HPS11, PS09], further makes use of the birthday paradox
to reduce the number of vectors that are needed in a list to guarantee that combining
one pair of vectors leads to a shortest lattice vector. Classically, this algorithm achieves
an asymptotic time complexity of 22.465d+o(d) with a space complexity of 21.233d+o(d).

Quantum complexities. Using quantum search, we can reduce the exponent for this
algorithm, as well as other provable sieving algorithms, by roughly 25%. Working out
the precise details1, this leads to a quantum time complexity of 21.799d+o(d) and a space
complexity of 21.286d+o(d), i.e., a reduction in the time exponent of slightly more than
27%. For other provable sieving algorithms, the quantum speed-up does not lead to better
time complexities compared to the quantum ListSieve-birthday, as shown in Table 14.2.

14.3.2 – Enumeration algorithms. In enumeration algorithms (see e.g. [FP85,
GNR10,HS07,HS10,Kan83,MW15,Poh81,PS08]), all lattice vectors are enumerated in-
side a giant ball around the origin that is known to contain at least one lattice vector. Let
L be a lattice with basis B = {b1, . . . ,bd}. Consider each lattice vector v ∈ L as a linear
combination of the basis vectors, i.e., v =

∑
i λibi. Now, we can represent each lattice

vector by its coefficient vector (λ1, . . . , λd). We would like to have all combinations of
values for (λ1, . . . , λd) such that the corresponding vector v lies inside the ball. We could
try any combination and see if it lies within the ball by computing the norm of the corre-
sponding vector, but there is a smarter way that ensures we only consider vectors that lie
within the ball and none that lie outside.

To this end, enumeration algorithms search from right to left, by identifying all val-
ues for λd such that there might exist λ ′1, . . . , λ ′d−1 such that the vector corresponding
to (λ ′1, . . . , λ ′d−1, λd) lies in the ball. To identify these values λ ′1, . . . , λ ′d−1, enumeration
algorithms use the Gram-Schmidt orthogonalization of the lattice basis as well as the pro-
jection of lattice vectors. Then, for each of these possible values for λd, the enumeration
algorithm considers all possible values for λd−1 and repeats the process until it reaches
possible values for λ1. This leads to a search which is serial in nature, as each value of λd
will lead to different possible values for λd−1 and so forth. Unfortunately, we can only
really apply the quantum search algorithm to problems where the list of objects to be
searched is known in advance.

One might suggest to forego the smart way to find short vectors and just search all
combinations of (λ1, . . . , λd) with appropriate upper and lower bounds on the different
λi’s. Then it becomes possible to apply quantum search, since we now have a prede-
termined list of vectors and just need to compute the norm of each vector. However, it
is doubtful that this will result in a faster algorithm, because the heuristic changes by
Gama–Nguyễn–Regev [GNR10] have reduced the running time of enumeration dramati-
cally (roughly by a factor 2d/2) and these changes only complicate the search area further
by changing the ball to an ellipsoid. There seems to be no simple way to apply quantum
search to the enumeration algorithms that are currently used in practice, but perhaps the
algorithms can be modified in some way.

1Technical details on this result, as well as the complexities obtained by applying quantum searching to
other provable sieving algorithms, can be found in [LMvdP13,LMvdP15].

14.3. OTHER ALGORITHMS 189

14.3.3 – The Voronoi cell algorithm. Consider a set of points in the Euclidean space.
For any given point in this set, its Voronoi cell is defined as the region that contains all
points that lie closer to this point than to any of the other points in the set. Now, given
a Voronoi cell, we define a relevant vector to be any vector in the set whose removal
from the set will change this particular Voronoi cell. If we pick our lattice as the set and
we consider the Voronoi cell around the zero vector, then any shortest vector is also a
relevant vector. Furthermore, given the relevant vectors of the Voronoi cell we can solve
the closest vector problem in 22d+o(d) time.

So how can we compute the relevant vectors of the Voronoi cell of a lattice L? Mic-
ciancio and Voulgaris [MV10a] show that this can be done by solving 2d − 1 instances of
CVP in the lattice 2L := {2v : v ∈ L}. However, in order to solve CVP we would need
the relevant vectors which means we are back to our original problem. Micciancio and
Voulgaris show that these instances of CVP can also be solved by solving several related
CVP instances in a lattice of lower rank. They give a basic and an optimized version of the
algorithm. The basic version only uses LLL as preprocessing and solves all these related
CVP instances in the lower rank lattice separately. As a consequence, the basic algorithm
runs in time 23.5d+o(d) and in space 2d+o(d). The optimized algorithm uses a stronger
preprocessing for the lattice basis, which takes exponential time. But since the most ex-
pensive part is the computation of the Voronoi relevant vectors, this extra preprocessing
time does not increase the asymptotic running time as it is executed only once. In fact,
having the reduced basis decreases the asymptotic running time to Õ(23d). Furthermore,
the optimized algorithm employs a trick that allows it to reduce 2k CVP instances in a lat-
tice of rank k to a single instance of an enumeration problem related to the same lattice.
The optimized algorithm solves CVP in time Õ(22d) using Õ(2d) space.

Now, in the basic algorithm, it would be possible to speed up the routine that solves
CVP given the Voronoi relevant vectors using a quantum computer. It would also be pos-
sible to speed up the routine that removes non-relevant vectors from the list of relevant
vectors using a quantum computer. Combining these two changes gives a quantum algo-
rithm with an asymptotic running time Õ(22.5d), which is still slower than the optimized
classical algorithm. It is not possible to apply these same speed-ups to the optimized al-
gorithm due to the aforementioned trick with the enumeration problem. The algorithm
to solve this enumeration problem makes use of a priority queue, which means the search
is not trivially parallelized. Once again, there does not seem to be a simple way to apply
quantum search to this special enumeration algorithm. However, it may be possible that
the algorithm can be modified in such a way that quantum search can be applied.

14.3.4 – Discrete Gaussian sampling. A very recent method for finding shortest vec-
tors in lattices is based on sampling and combining lattice vectors sampled from a dis-
crete Gaussian on the lattice. Given a lattice, a discrete Gaussian distribution on the
lattice is what you might expect it to be; the probability of sampling a non-lattice vector
is 0, and the probability of sampling a lattice vector x is proportional to exp−O(‖x‖2),
comparable to a regular multivariate Gaussian distribution. These discrete Gaussians
are commonly used in lattice-based cryptographic primitives, such as lattice-based sig-
natures [DDLL13, Lyu12], and it is well-known that sampling from a discrete Gaus-
sian distribution with a very large standard deviation (above the smoothing parame-
ter [GPV08,Mic04,MR07]) is easy, while sampling from a distribution with a small stan-
dard deviation (often sampling short vectors) is hard.

190 CHAPTER 14. EFFECTS OF QUANTUM SEARCH

The idea of Aggarwal–Dadush–Regev–Stephens-Davidowitz [ADRSD15] to solve SVP
with discrete Gaussian sampling is as follows. First, many vectors are sampled from a
discrete Gaussian with a large standard deviation. Then, to find shorter and shorter lattice
vectors, list vectors are combined and averaged to obtain samples from a Gaussian with a
smaller standard deviation. More precisely, two samples v1, v2 from a discrete Gaussian
with width σ can be combined and averaged to obtain a sample v ′ = (v1 + v2)/2 which
follows a discrete Gaussian with width σ/

√
2 using clever rejection sampling techniques.

To be able to combine list vectors, they need to be in the same coset of 2L, which means
that the algorithm needs to store 2d buckets corresponding to the 2d cosets of 2L, and
within each bucket vectors are combined to obtain samples from a more narrow Gaussian
distribution. Overall, this leads to time and space complexities of 2d+o(d) for provably
solving SVP.

This algorithm is actually quite similar to the overlattice sieve of Becker–Gama–
Joux [BGJ14] which we discussed in Section 14.2.5. Vectors are already stored in buck-
ets, and so searching for vectors in the same coset is not costly at all. In this algorithm,
the number of vectors in each bucket is even sub-exponential in d, so a quantum search
speed-up does not seem to bring down the asymptotic time or space complexities at all.
Due to the number of cosets of 2L (namely 2d), this algorithm seems (classically and
quantumly) bound by a time and space complexity of at least 2d+o(d), which it achieves.

14.3.5 – Provably solving approximate SVP with sieving. While most sieving al-
gorithms are concerned with finding exact solutions to the shortest vector problem, in
many cryptographic applications finding a short (rather than a shortest) vector in the lat-
tice also suffices to break the scheme. In 2011, Liu–Wang–Xu–Zheng [LWXZ11] analyzed
the impact of this relaxation of SVP (solving SVPδ with approximation factor δ > 1) on
lattice sieving algorithms. In particular, they analyzed the ListSieve-birthday algorithm
considered in Section 14.3.1, taking into account the fact that an approximate solution
may suffice. Their algorithm [LWXZ11, Algorithm 1] is effectively identical to the original
ListSieve-birthday algorithm of Pujol and Stehlé [PS09], but parameters may be chosen
differently to obtain better complexities for approximate SVP.

Classical complexities. Intuitively, the effect of large δ can be understood as that the
impact of the use of perturbed lattice vectors in the sieves (instead of actual lattice vectors)
becomes less and less. In the limit of large δ, the impact of perturbations disappears
(although it still guarantees correctness of the algorithm), and we get the same upper
bound on the list size of 20.401d+o(d) as for the GaussSieve [MV10b]: 20.208d+o(d) is a
lower bound and estimate for the kissing constant in high dimensions, while 20.401d+o(d)

is a proven asymptotic upper bound on the same quantity. Since the runtime of the sieve
remains quadratic in the list size, this leads to a time complexity of 20.802d+o(d), where
the order term o(d) disappears as d→∞ and δ→∞.

Quantum complexities. As expected, using quantum search in the ListSieve-birthday
algorithm again leads to a gain in the exponent of 25%; a single search can be done in
time Õ(

√
n), leading to a total time complexity of Õ(n3/2) rather than Õ(n2). For solving

approximate-SVP with large δ, this means that the quantum time and space complexities
become 20.602d+o(d) and 20.401d+o(d) respectively.

CHAPTER 15

Conclusions and open problems

Conclusions

We finally conclude the second part by taking another look at the research questions
presented in Chapter 8, and how these questions were answered in Chapters 9–14. After
summarizing these contributions, we will end this chapter with some open problems that
appeared throughout the second part, which may be interesting for future research.

Q1. Can leveled sieving be further improved?

In Chapter 9 we revisited the leveled sieving results of Nguyễn and Vidick [NV08], Wang–
Liu–Tian–Bi [WLTB11], and Zhang–Pan–Hu [ZPH13]. We established an apparent pat-
tern in the time and space complexities that led us to a natural conjecture on the com-
plexities of sieving with even more layers of centers. If this conjectured pattern is indeed
correct, then with 4-level sieving we may be able to slightly improve upon the time com-
plexity of 3-level sieving, and higher-level sieving does not lead to further improvements.
With 4-level sieving, the best time and space complexities match the asymptotics of the
overlattices approach [BGJ14], and so sieving can be slightly improved compared to 3-
level sieving, but ultimately does not lead to better asymptotics than previous work.

Q2. Can known techniques from NNS be used to speed up sieving?

In Chapters 10 and 11 we then focused on how existing techniques from nearest neigh-
bor searching (locality-sensitive hashing) can be applied to sieving. This combination of
sieving and LSH was previously considered and dismissed by Nguyễn and Vidick [NV08],
but with an average-case analysis rather than a worst-case analysis, and using LSH tech-
niques aimed at the angular distance rather than the Euclidean distance, we that it may
be possible to improve upon previous results with LSH.

In Chapter 10 we first considered the method of Charikar [Cha02], which is very
efficient in practice due to the low cost of computing hashes, and has a reasonable
asymptotic performance. This led to an improvement in the asymptotic time complex-
ity to 20.3366d+o(d). For the Nguyễn–Vidick sieve, we saw that this time complexity can
be achieved without increasing the space complexity, leading to a significant theoretical
improvement over previous trade-offs. For the more practical GaussSieve it seems that
we cannot avoid increasing the space complexity to 20.3366d+o(d) as well. Experiments
showed that with the GaussSieve-based HashSieve, we obtain an improvement over the
GaussSieve already in moderate dimensions, and the increase in the space complexity is
smaller than asymptotics suggest, and may be further reduced with probing.

192 CHAPTER 15. CONCLUSIONS AND OPEN PROBLEMS

In Chapter 11 we then considered the recent spherical cap LSH method of [AINR14,
AR15a], which has a better asymptotic performance but appears to be less practical due
to a high subexponential cost of computing hashes. We saw how this method can be ex-
tended to all of Rd, dividing the space into hypercones, and we saw that combining this
technique with sieving leads to a theoretical time complexity of 20.2972d+o(d) for solving
SVP in dimension d. However, this method appears to be less suitable for practical appli-
cations, even though asymptotically it is superior to hyperplane LSH, and we speculated
that the ultimate goal may be to design an LSH primitive achieving the asymptotics of
hypercone LSH with the practicality of hyperplane LSH.

Q3. Can existing NNS techniques be improved (and applied to sieving)?

In Chapter 12 we set out to find a method which does achieve both an optimal asymptotic
performance and a low overhead of computing hashes, and this resulted in cross-polytope
LSH. This method was previously proposed by Terasawa and Tanaka [TT07], who al-
ready showed it appears to perform well in practice, but no asymptotic guarantees were
provided then. We showed that indeed it achieves the same asymptotic performance
as spherical and hypercone LSH, while being (almost) as practical as hyperplane LSH.
Moreover, we saw that this method is very suitable for sieving on ideal lattices, due to
the predictability of hash values of shifted vectors. In the context of sieving, this method
already seems to outperform hyperplane LSH in moderate dimensions, and on ideal lat-
tices it is much better than hyperplane LSH and the ideal GaussSieve. As cross-polytope
LSH matches lower bounds on LSH and has a small polynomial overhead, this appears to
be the best that we can do when combining sieving with LSH.

Q4. Can new NNS primitives be designed specifically for settings like sieving?

In Chapter 13 we showed that this is not quite the end of the story, as these lower bounds
on LSH all make a small assumption: all these lower bounds only hold if the collision prob-
abilities are assumed to be sufficiently large (2o(d)). After all, if the collision probabilities
were smaller, then we would need an exponential number of hash tables, which is im-
practical if n = 2o(d) (low-density). In sieving however we have a list of size n = 2Θ(d)

(high-density) and exponentially small collision probabilities may not be that bad after
all. Indeed, slightly deviating from the LSH framework, we saw that a method similar to
hypercone LSH is able to outperform hypercone LSH in high-density settings, which for
sieving implies an asymptotic time complexity of only 20.2925d+o(d). Experiments showed
that this method is also very practical with a low polynomial overhead, and may even be
more practical in high dimensions than cross-polytope LSH.

Q5. How do quantum algorithms affect the asymptotic complexities of sieving?

In Chapter 14 we finally studied how quantum algorithms (and in particular Grover’s
quantum search algorithm [Gro96]) affect the asymptotic performance of sieving. Infor-
mally, quantum searching roughly reduces the exponent for sieving with naive search-
ing by 25%, and the speed-up becomes smaller as the searching becomes more sophisti-
cated with nearest-neighbor search techniques. For leveled sieving we saw that quantum
searching does not improve the asymptotic complexities, while for sieving with LSH and
other NNS methods we obtained various asymptotic speed-ups, with the best complexi-
ties obtained using the hypercone filtering approach of Chapter 13. For that algorithm,
the asymptotic quantum complexity is potentially 20.265d+o(d) in high dimensions.

193

Open problems

The search for answers to the above research questions led to new questions as well,
and below we state some open problems which may be a topic for future work.

Q6. What else can be said about the leveled sieving approach?

a. Can the various conjectures in Chapter 9 be proven?

b. Why do the complexities match those of the overlattices algorithm?

c. What does the algorithm in the limit of large k mean?

Especially in Chapter 9, one could say we raised more questions than we answered. The
conjectured complexities for high-level sieving seem to answer the first research question,
but as these are only conjectures, an open problem is to actually prove these results. The
analysis in Chapter 9 may serve as a guideline for constructing a proof, as for instance
we outlined which parameters seem optimal. One possible method to construct proofs
for high-level sieving would be to use induction on the different layers, as we repeatedly
apply the same procedure of partitioning a large ball into slightly smaller balls.

Besides these missing proofs, we saw that there seems to be a relation between lev-
eled sieving and the overlattices approach; both the optimized complexities and the
time/memory trade-offs of leveled sieving overlap with the trade-off curve for the algo-
rithm of [BGJ14]. Why do these complexities overlap? Are the algorithms essentially the
same, when viewed in the right way? And can leveled sieving with large k be somehow
interpreted as using the overlattices approach with α = β =

√
2?

More generally, the algorithm in the limit of large k shows how, using 2d/2+o(d) lattice
vectors as centers in all the different layers, we can essentially find nearby center vectors
to a lattice vector in time 2o(d). The use of many layers of centers, each time slightly
decreasing the radius of the balls, also very much looks like the Nguyễn–Vidick sieve itself
which also uses many iterations of applying a sieve to the data set, slightly shrinking the
radius, until in the end a shortest vector is found. Can these ideas be combined to build
a more efficient leveled sieve?

Q7. Can even better methods be designed for high-density NNS settings?

As argued above, bounds on locality-sensitive hashing all make an assumption which
does not necessarily have to hold in the context of sieving, and so it is unclear what is the
best performance that can possibly be achieved just by combining e.g. the Nguyễn–Vidick
sieve or GaussSieve with nearest-neighbor search techniques. Is it possible to further
improve upon the method described in Chapter 13? Or can we prove lower bounds on
the complexity of any method for solving high-density NNS, which prove (or disprove)
that the filtering method of Chapter 13 is optimal?

Q8. Can techniques from NNS be used for other lattice algorithms as well?

In this work we focused on sieving algorithms with provable guarantees under a certain
heuristic assumption (variants of the Nguyễn–Vidick sieve), and on practical algorithms
with no provable guarantees on the time complexity (variants of the GaussSieve). If one
wants to be sure that the algorithm solves SVP on arbitrary lattices and lattice bases using
a certain amount of time and memory, without making any heuristic assumptions, then

194 CHAPTER 15. CONCLUSIONS AND OPEN PROBLEMS

currently the best time complexity for SVP is based on discrete Gaussian sampling (time
2d+o(d)), with sieving running far behind (22.465d+o(d)). Can similar nearest-neighbor
techniques be used to obtain provable speed-ups to sieving algorithms as well? Or can
these techniques perhaps be used to speed up other algorithms, like the Voronoi cell
algorithm [AEVZ02,MV10a]?

One particularly interesting direction to investigate with NNS seems to be the closest
vector problem with preprocessing (CVPP): given a basis of a lattice, preprocess it in such
a way that when given a non-lattice target vector later, one can quickly find the nearest
lattice vector. This problem seems closely related to the general nearest-neighbor search
problem, with the main differences being that (a) in CVPP, the data set has an infinite size
(all lattice vectors), and (b) in CVPP, the data set is known to be very structured. For NNS,
it is known that the problem can be solved in time no(1) using more memory [Kap15,
Pan06], and an interesting question would be to study whether these techniques from
NNS can also be used to significantly speed up CVPP.1

Q9. What is the cross-over point between enumeration and sieving?

Already since the early 1980s, enumeration has had the status of the most practical al-
gorithm for solving exact SVP in moderate to high dimensions. When sieving algorithms
finally seemed to come close to enumeration around 2008-2010 [NV08, MV10b], the
extreme pruning improvement to enumeration [GNR10] made sure that enumeration
remained the best algorithm for solving SVP for several years to come. With the improve-
ments to sieving presented in the second part of this work, the balance seems to shift
more and more towards sieving. Micciancio and Walter [MW15] previously estimated
the cross-over point of enumeration and sieving with hyperplane LSH to lie at dimen-
sions d > 700, and with better preprocessing for enumeration this point would shift to
d > 1800. As we can do better with cross-polytope LSH and hypercone filtering, this
cross-over point may go down a lot. Practical experiments with sieving may further show
if sieving can already be performed in dimensions as high as 130 or 140, and if in those
dimensions it is faster than enumeration.

Q10. What can be done with less memory?

Finally, we focused on trade-offs between the time and the memory, where we used more
memory (or the same amount of memory, for the Nguyễn–Vidick sieve) so that the asymp-
totic time complexity would be better. In each of these algorithms the memory complex-
ity was at least (4/3)d/2+o(d) ≈ 20.208d+o(d), and this complexity seems to be a lower
bound inherent to the sieving method of combining pairs of vectors to find shorter vec-
tors. However, in high dimensions even this space complexity may already be too much.
Can trade-offs also be obtained in the other direction? Can we use less memory, perhaps
using more time? Can we perhaps combine ideas from enumeration and sieving, where
we consider combinations of multiple lattice vectors to find shorter vectors, and achieve a
smaller asymptotic space complexity? More generally: given a certain asymptotic space
complexity, what is the best asymptotic time complexity that we can achieve with this
amount of memory?

1Note that one of the main applications of CVPP is as a subroutine within enumeration, as described in
e.g. [GNR10, Open questions]. An efficient CVPP routine could be used to prune the branches in lower levels
of the enumeration tree, which might lead to significant improvements in practice for enumeration.

Summary

Search problems in cryptography: from fingerprinting to lattice sieving

This thesis studies two somewhat related but different topics: collusion-resistant fin-
gerprinting schemes, and lattice sieving algorithms.

Collusion-resistant fingerprinting aims at deterring digital piracy by embedding fin-
gerprints or watermarks in digital content, so that someone who copies and redistributes
copyright-protected digital content (say a video game or a movie) can be traced and
caught. Embedding unique fingerprints in each user copy guarantees that individual users
who simply share their own version of the content with others can be traced when one
such shared copy is found online. Tracing the responsible users becomes significantly
harder however when several malicious users collude and mix their versions of the con-
tent to create a new copy with a different watermark. The goal of collusion-resistant
fingerprinting schemes is to develop an efficient assignment of watermarks to different
users, and to design an efficient tracing algorithm which can even trace mixed copies
back to one or more of the responsible users (with high probability).

The first part of this thesis discusses limitations of existing methods from the litera-
ture, improvements to these methods to reduce the probability of error in these schemes,
extensions of these methods to slightly different models which may appear in practice,
and more precise bounds on what sizes of the watermarks are necessary and sufficient
for tracing large pirate coalitions. The first part also studies how these techniques can
be applied to a closely related field of research (group testing) to improve upon current
methods from the literature.

Lattice-based cryptography considers designing cryptographic primitives for secure
communication based on hard problems on lattices. In the last few decades, there has
been a tremendous amount of research on designing efficient lattice-based primitives,
ranging from simple encryption and signature schemes to more exotic schemes like fully-
homomorphic encryption and multilinear maps. All these schemes are only at most as
hard as the underlying lattice problems which are presumed to be hard, and parameters
for these schemes are commonly chosen based on our current knowledge of algorithms
for solving these lattice problems: we presume the encryption scheme with these pa-
rameters is secure, because the best known algorithm for solving the underlying lattice
problem would not be able to solve it in a reasonable amount of time. One of the main
hard problems in lattice-based cryptography is the shortest vector problem (SVP), and
currently the fastest (heuristic) method for solving this problem in high dimensions is
lattice sieving.

The second part of this thesis discusses limitations of existing sieving algorithms from
the literature, improvements to sieving based on nearest-neighbor search techniques, and
the estimated quantum hardness of this lattice problem in high dimensions using quan-
tum searching. Besides applying techniques from nearest-neighbor searching to lattice
sieving, improvements are also proposed in the area of nearest-neighbor searching itself,
improving upon the state-of-the-art both in theory and in practice.

Curriculum Vitae

Thijs Laarhoven was born on February 11, 1989 in Veldhoven, The Netherlands. After
finishing his pre-university education at the Sondervick College in Veldhoven in 2006, he
studied Industrial and Applied Mathematics at the Eindhoven University of Technology.
He completed his bachelor’s and master’s studies (cum laude) in 2009 and 2011 respec-
tively. The title of his master’s thesis is Collusion-resistant traitor tracing schemes, and part
of this work was carried out during an internship at Irdeto in Eindhoven. His work on his
master’s project led to two journal publications and one patent application.

In 2011, he started his PhD project at the Coding and Crypto group at the Eindhoven
University of Technology under the supervision of dr. Benne de Weger. This research was
funded by an NWO DIAMANT PhD grant. Besides continuing his previous work from his
final master’s project on collusion-resistant traitor tracing, he also studied algorithms for
lattice-based cryptography, and in particular lattice sieving algorithms. Among others,
this research resulted in three journal publications, thirteen peer-reviewed conference
publications, two publications which are currently under review, two best paper awards
(WIFS 2012 and IH&MMSec 2015), one best student paper award (IH&MMSec 2014),
and the two parts of this dissertation.

Bibliography

[AB06] Nagaraj Prasanth Anthapadmanabhan and Alexander Barg. Random bi-
nary fingerprinting codes for arbitrarily sized coalitions. In ISIT, pages
351–355, 2006. doi:10.1109/ISIT.2006.261612.

[ABD08] Nagaraj Prasanth Anthapadmanabhan, Alexander Barg, and Ilya Dumer.
On the fingerprinting capacity under the marking assumption. IEEE Trans-
actions on Information Theory, 54(6):2678–2689, 2008. doi:10.1109/
TIT.2008.921859.

[ABN08] Barry C. Arnold, Narayanaswamy Balakrishnan, and Haikady N. Nagaraja.
A First Course in Order Statistics. SIAM, 2008. URL: http://epubs.
siam.org/doi/book/10.1137/1.9780898719062.

[Ach01] Dimitris Achlioptas. Database-friendly random projections. In PODS,
pages 274–281, 2001. doi:10.1145/375551.375608.

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-
Lindenstrauss with binary coins. Journal of Computer and System Sci-
ences, 66(4):671–687, 2003. doi:http://dx.doi.org/10.1016/
S0022-0000(03)00025-4.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In STOC, pages 284–293, 1997. doi:
10.1145/258533.258604.

[ADL11a] Rudolf Ahlswede, Christian Deppe, and Vladimir S. Lebedev. Bounds for
threshold and majority group testing. In ISIT, pages 69–73, 2011. doi:
10.1109/ISIT.2011.6034222.

[ADL11b] Rudolf Ahlswede, Christian Deppe, and Vladimir S. Lebedev. Majority
group testing with density tests. In ISIT, pages 326–330, 2011. doi:
10.1109/ISIT.2011.6034139.

[ADL13] Rudolf Ahlswede, Christian Deppe, and Vladimir S. Lebedev. Thresh-
old and majority group testing. In Information Theory, Combina-
torics, and Search Theory, pages 488–508, 2013. doi:10.1007/
978-3-642-36899-8_24.

http://dx.doi.org/10.1109/ISIT.2006.261612
http://dx.doi.org/10.1109/TIT.2008.921859
http://dx.doi.org/10.1109/TIT.2008.921859
http://epubs.siam.org/doi/book/10.1137/1.9780898719062
http://epubs.siam.org/doi/book/10.1137/1.9780898719062
http://dx.doi.org/10.1145/375551.375608
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-0000(03)00025-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-0000(03)00025-4
http://dx.doi.org/10.1145/258533.258604
http://dx.doi.org/10.1145/258533.258604
http://dx.doi.org/10.1109/ISIT.2011.6034222
http://dx.doi.org/10.1109/ISIT.2011.6034222
http://dx.doi.org/10.1109/ISIT.2011.6034139
http://dx.doi.org/10.1109/ISIT.2011.6034139
http://dx.doi.org/10.1007/978-3-642-36899-8_24
http://dx.doi.org/10.1007/978-3-642-36899-8_24

200 BIBLIOGRAPHY

[ADRSD15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-
Davidowitz. Solving the shortest vector problem in 2n time via discrete
Gaussian sampling. In STOC, pages 733–742, 2015. doi:10.1145/
2746539.2746606.

[AEVZ02] Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger. Clos-
est point search in lattices. IEEE Transactions on Information Theory,
48(8):2201–2214, Aug 2002. doi:10.1109/TIT.2002.800499.

[AI06] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In FOCS, pages 459–
468, 2006. doi:10.1109/FOCS.2006.49.

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Communications of the
ACM, 51(1):117–122, 2008. doi:10.1145/1327452.1327494.

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and
Ludwig Schmidt. Practical and optimal LSH for angular distance. In NIPS,
pages 1225–1233, 2015. URL: https://papers.nips.cc/paper/
5893-practical-and-optimal-lsh-for-angular-distance.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy Lê Nguyễn, and Ilya Razenshteyn.
Beyond locality-sensitive hashing. In SODA, pages 1018–1028, 2014.
doi:10.1137/1.9781611973402.76.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In STOC, pages 99–108, 1996. doi:10.1145/237814.237838.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for random-
ized reductions. In STOC, pages 10–19, 1998. doi:10.1145/276698.
276705.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In
ICALP, pages 1–9, 1999. doi:10.1007/3-540-48523-6_1.

[AKS01a] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. An overview of the
sieve algorithm for the shortest lattice vector problem. In CALC, pages
1–3, 2001. doi:10.1007/3-540-44670-2_1.

[AKS01b] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In STOC, pages 601–610, 2001.
doi:10.1145/380752.380857.

[Amb04] Andris Ambainis. Quantum walk algorithm for element distinctness. In
FOCS, pages 22–31, 2004. doi:10.1109/FOCS.2004.54.

[Ami10] Ehsan Amiri. Fingerprinting Codes: Higher Rates, Quick Accusations. PhD
thesis, Simon Fraser University, 2010. URL: http://summit.sfu.ca/
item/11454.

http://dx.doi.org/10.1145/2746539.2746606
http://dx.doi.org/10.1145/2746539.2746606
http://dx.doi.org/10.1109/TIT.2002.800499
http://dx.doi.org/10.1109/FOCS.2006.49
http://dx.doi.org/10.1145/1327452.1327494
https://papers.nips.cc/paper/5893-practical-and-optimal-lsh-for-angular-distance
https://papers.nips.cc/paper/5893-practical-and-optimal-lsh-for-angular-distance
http://dx.doi.org/10.1137/1.9781611973402.76
http://dx.doi.org/10.1145/237814.237838
http://dx.doi.org/10.1145/276698.276705
http://dx.doi.org/10.1145/276698.276705
http://dx.doi.org/10.1007/3-540-48523-6_1
http://dx.doi.org/10.1007/3-540-44670-2_1
http://dx.doi.org/10.1145/380752.380857
http://dx.doi.org/10.1109/FOCS.2004.54
http://summit.sfu.ca/item/11454
http://summit.sfu.ca/item/11454

BIBLIOGRAPHY 201

[And09] Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the
Impossible. PhD thesis, Massachusetts Institute of Technology, 2009. URL:
http://hdl.handle.net/1721.1/55090.

[AR03] Dorit Aharonov and Oded Regev. A lattice problem in quantum NP. In
FOCS, pages 210–219, 2003. doi:10.1109/SFCS.2003.1238195.

[AR15a] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing
for approximate near neighbors. In STOC, pages 793–801, 2015. doi:
10.1145/2746539.2746553.

[AR15b] Alexandr Andoni and Ilya Razenshteyn. Tight lower bounds for data-
dependent locality-sensitive hashing. Manuscript, pages 1–15, 2015. URL:
http://www.ilyaraz.org/publications.html.

[AS72] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical For-
mulas. Dover Publications, 1972. URL: http://people.math.sfu.
ca/~cbm/aands/toc.htm.

[AS12] George K. Atia and Venkatesh Saligrama. Boolean compressed sensing and
noisy group testing. IEEE Transactions on Information Theory, 58(3):1880–
1901, 2012. doi:10.1109/TIT.2011.2178156.

[AT09] Ehsan Amiri and Gábor Tardos. High rate fingerprinting codes and the
fingerprinting capacity. In SODA, pages 336–345, 2009. URL: http:
//dl.acm.org/citation.cfm?id=1496808.

[AZ10] Emmanuel Abbe and Lizhong Zheng. Linear universal decoding for com-
pound channels. IEEE Transactions on Information Theory, 56(12):5999–
6013, 2010. doi:10.1109/TIT.2010.2080910.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM Journal on Com-
puting, 26(5):1510–1523, 1997. doi:10.1137/S0097539796300933.

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors.
Post-Quantum Cryptography. Springer, 2009. URL: http://www.
springerlink.com/content/978-3-540-88701-0.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
bounds on quantum searching. Fortschritte der Physik, 46(4–
5):493–505, 1998. URL: http://onlinelibrary.wiley.com/
doi/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::
AID-PROP493%3E3.0.CO;2-P/abstract.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New direc-
tions in nearest neighbor searching with applications to lattice sieving. In
SODA, pages 10–24, 2016. doi:10.1137/1.9781611974331.ch2.

http://hdl.handle.net/1721.1/55090
http://dx.doi.org/10.1109/SFCS.2003.1238195
http://dx.doi.org/10.1145/2746539.2746553
http://dx.doi.org/10.1145/2746539.2746553
http://www.ilyaraz.org/publications.html
http://people.math.sfu.ca/~cbm/aands/toc.htm
http://people.math.sfu.ca/~cbm/aands/toc.htm
http://dx.doi.org/10.1109/TIT.2011.2178156
http://dl.acm.org/citation.cfm?id=1496808
http://dl.acm.org/citation.cfm?id=1496808
http://dx.doi.org/10.1109/TIT.2010.2080910
http://dx.doi.org/10.1137/S0097539796300933
http://www.springerlink.com/content/978-3-540-88701-0
http://www.springerlink.com/content/978-3-540-88701-0
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-3978(199806)46:4/5%3C493::AID-PROP493%3E3.0.CO;2-P/abstract
http://dx.doi.org/10.1137/1.9781611974331.ch2

202 BIBLIOGRAPHY

[BDH+01] Harry Buhrman, Christoph Dürr, Mark Heiligman, Peter Høyer, Frédéric
Magniez, Miklos Santha, and Ronald de Wolf. Quantum algorithms for
element distinctness. In CCC, pages 131–137, 2001. doi:10.1109/
CCC.2001.933880.

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum com-
puters make SHARCS obsolete? In SHARCS, page 105, 2009. URL:
http://repository.tue.nl/663426.

[BGJ14] Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm
based on overlattices. In ANTS, pages 49–70, 2014. doi:10.1112/
S1461157014000229.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice siev-
ing without increasing the memory, using sub-quadratic nearest neighbor
search. Cryptology ePrint Archive, Report 2015/522, pages 1–14, 2015.
URL: http://eprint.iacr.org/2015/522.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quan-
tum amplitude amplification and estimation. Contemporary Mathemat-
ics, 305:53–74, 2002. URL: http://arxiv.org/abs/quant-ph/
0005055.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of
hash and claw-free functions. In LATIN, pages 163–169, 1998. doi:
10.1007/BFb0054319.

[BK04] George R. Blakley and Gregory Kabatiansky. Random coding technique
for digital fingerprinting codes: Fighting two pirates revisited. In ISIT,
page 202, 2004. doi:10.1109/ISIT.2004.1365239.

[BL15a] Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using
cross-polytope LSH. Cryptology ePrint Archive, Report 2015/823, pages
1–25, 2015. URL: http://eprint.iacr.org/2015/823.

[BL15b] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography, 2015.
URL: http://pqcrypto.org/.

[BLS13] Jay Bartroff, Tze Leung Lai, and Mei-Chiung Shih. Sequential Ex-
perimentation in Clinical Trials. Springer, 2013. doi:10.1007/
978-1-4614-6114-2.

[BNvdP14] Joppe W. Bos, Michael Naehrig, and Joop van de Pol. Sieving for shortest
vectors in ideal lattices: a practical perspective. Cryptology ePrint Archive,
Report 2014/880, pages 1–23, 2014. URL: http://eprint.iacr.org/
2014/880.

[BPS01] Omer Berkman, Michal Parnas, and Jǐrí Sgall. Efficient dynamic traitor
tracing. SIAM Journal on Computing, 30(6):1802–1828, 2001. doi:10.
1137/S0097539700367984.

http://dx.doi.org/10.1109/CCC.2001.933880
http://dx.doi.org/10.1109/CCC.2001.933880
http://repository.tue.nl/663426
http://dx.doi.org/10.1112/S1461157014000229
http://dx.doi.org/10.1112/S1461157014000229
http://eprint.iacr.org/2015/522
http://arxiv.org/abs/quant-ph/0005055
http://arxiv.org/abs/quant-ph/0005055
http://dx.doi.org/10.1007/BFb0054319
http://dx.doi.org/10.1007/BFb0054319
http://dx.doi.org/10.1109/ISIT.2004.1365239
http://eprint.iacr.org/2015/823
http://pqcrypto.org/
http://dx.doi.org/10.1007/978-1-4614-6114-2
http://dx.doi.org/10.1007/978-1-4614-6114-2
http://eprint.iacr.org/2014/880
http://eprint.iacr.org/2014/880
http://dx.doi.org/10.1137/S0097539700367984
http://dx.doi.org/10.1137/S0097539700367984

BIBLIOGRAPHY 203

[BS98] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital
data. IEEE Transactions on Information Theory, 44(5):1897–1905, 1998.
doi:10.1109/18.705568.

[BS12] Waldemar Berchtold and Marcel Schäfer. Performance and code length
optimization of joint decoding Tardos fingerprinting. In MMSec, pages
27–32, 2012. doi:10.1145/2361407.2361412.

[BŠ11] Dion Boesten and Boris Škorić. Asymptotic fingerprinting capacity for
non-binary alphabets. In IH, pages 1–13, 2011. doi:10.1007/
978-3-642-24178-9_1.

[BŠ12] Dion Boesten and Boris Škorić. Asymptotic fingerprinting capacity in the
combined digit model. In IH, pages 255–268, 2012. doi:10.1007/
978-3-642-36373-3_17.

[BT08] Oded Blayer and Tamir Tassa. Improved versions of Tardos’ fingerprinting
scheme. Designs, Codes and Cryptography, 48(1):79–103, 2008. doi:
10.1007/s10623-008-9200-z.

[BUV14] Mark Bun, Jonathan Ullman, and Salil Vadhan. Fingerprinting codes and
the price of approximate differential privacy. In STOC, pages 1–10, 2014.
doi:10.1145/2591796.2591877.

[CCB+13] Chun Lam Chan, Sheng Cai, Mayank Bakshi, Sidharth Jaggi, and
Venkatesh Saligrama. Stochastic threshold group testing. In ITW, pages
1–5, 2013. doi:10.1109/ITW.2013.6691242.

[CCJS11] Chun Lam Chan, Pak Hou Che, Sidharth Jaggi, and Venkatesh Saligrama.
Non-adaptive probabilistic group testing with noisy measurements: Near-
optimal bounds with efficient algorithms. In ALLERTON, pages 1832–
1839, 2011. doi:10.1109/Allerton.2011.6120391.

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cau-
tionary tale. In ETSI 2nd Quantum-Safe Crypto Workshop, pages 1–9,
2014. URL: http://docbox.etsi.org/Workshop/2014/201410_
CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf.

[Cha02] Moses S. Charikar. Similarity estimation techniques from rounding al-
gorithms. In STOC, pages 380–388, 2002. doi:10.1145/509907.
509965.

[Che72] Herman Chernoff. Sequential Analysis and Optimal Design. SIAM, 1972.
URL: http://books.google.nl/books?id=jXjRteblBLoC&dq=
Sequential+Analysis+and+Optimal+Design&lr=&hl=
nl&source=gbs_navlinks_s.

[Che13] Mahdi Cheraghchi. Improved constructions for non-adaptive threshold
group testing. Algorithmica, 67(3):384–417, 2013. doi:10.1007/
s00453-013-9754-7.

http://dx.doi.org/10.1109/18.705568
http://dx.doi.org/10.1145/2361407.2361412
http://dx.doi.org/10.1007/978-3-642-24178-9_1
http://dx.doi.org/10.1007/978-3-642-24178-9_1
http://dx.doi.org/10.1007/978-3-642-36373-3_17
http://dx.doi.org/10.1007/978-3-642-36373-3_17
http://dx.doi.org/10.1007/s10623-008-9200-z
http://dx.doi.org/10.1007/s10623-008-9200-z
http://dx.doi.org/10.1145/2591796.2591877
http://dx.doi.org/10.1109/ITW.2013.6691242
http://dx.doi.org/10.1109/Allerton.2011.6120391
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://dx.doi.org/10.1145/509907.509965
http://dx.doi.org/10.1145/509907.509965
http://books.google.nl/books?id=jXjRteblBLoC&dq=Sequential+Analysis+and+Optimal+Design&lr=&hl=nl&source=gbs_navlinks_s
http://books.google.nl/books?id=jXjRteblBLoC&dq=Sequential+Analysis+and+Optimal+Design&lr=&hl=nl&source=gbs_navlinks_s
http://books.google.nl/books?id=jXjRteblBLoC&dq=Sequential+Analysis+and+Optimal+Design&lr=&hl=nl&source=gbs_navlinks_s
http://dx.doi.org/10.1007/s00453-013-9754-7
http://dx.doi.org/10.1007/s00453-013-9754-7

204 BIBLIOGRAPHY

[CHKV09] Mahdi Cheraghchi, Ali Hormati, Amin Karbasi, and Martin Vetterli. Com-
pressed sensing with probabilistic measurements: A group testing solu-
tion. In ALLERTON, pages 30–35, 2009. doi:10.1109/ALLERTON.
2009.5394829.

[CHKV11] Mahdi Cheraghchi, Ali Hormati, Amin Karbasi, and Martin Vetterli. Group
testing with probabilistic tests: Theory, design and application. IEEE
Transactions on Information Theory, 57(10):7057–7067, 2011. doi:
10.1109/TIT.2011.2148691.

[Cho94] Kwok Pui Choi. On the medians of gamma distributions and an equa-
tion of Ramanujan. Proceedings of the American Mathematical Soci-
ety, 121(1):245–251, 1994. URL: http://www.jstor.org/stable/
2160389.

[CHS10] Charles J. Colbourn, Daniel Horsley, and Violet R. Syrotiuk. Frameproof
codes and compressive sensing. In ALLERTON, pages 985–990, 2010.
doi:10.1109/ALLERTON.2010.5707016.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic
curve isogenies in quantum subexponential time. Journal of Mathematical
Cryptology, 8(1):1–29, 2014. doi:10.1515/jmc-2012-0016.

[CJSA12] Chun Lam Chan, Sidharth Jaggi, Venkatesh Saligrama, and Samar Agni-
hotri. Non-adaptive group testing: Explicit bounds and novel algorithms.
In ISIT, pages 1837–1841, 2012. doi:10.1109/ISIT.2012.6283597.

[CJSA14] Chun Lam Chan, Sidharth Jaggi, Venkatesh Saligrama, and Samar Ag-
nihotri. Non-adaptive group testing: Explicit bounds and novel algo-
rithms. IEEE Transactions on Information Theory, 60(5):3019–3035, 2014.
doi:10.1109/TIT.2014.2310477.

[CN11] Yuanmi Chen and Phong Q. Nguyễn. BKZ 2.0: Better lattice secu-
rity estimates. In ASIACRYPT, pages 1–20, 2011. doi:10.1007/
978-3-642-25385-0_1.

[CNFS05] Josep Cotrina-Navau, Marcel Fernández, and Miguel Soriano. A family of
collusion 2-secure codes. In IH, pages 387–397, 2005. doi:10.1007/
11558859_28.

[CS99] John H. Conway and Neil J.A. Sloane. Sphere packings, lattices and
groups. Springer, 1999. URL: http://books.google.nl/books/
about/Sphere_Packings_Lattices_and_Groups.html?id=
upYwZ6cQumoC&redir_esc=y.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory
(2nd Edition). Wiley, 2006. URL: http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-0471241954.html.

http://dx.doi.org/10.1109/ALLERTON.2009.5394829
http://dx.doi.org/10.1109/ALLERTON.2009.5394829
http://dx.doi.org/10.1109/TIT.2011.2148691
http://dx.doi.org/10.1109/TIT.2011.2148691
http://www.jstor.org/stable/2160389
http://www.jstor.org/stable/2160389
http://dx.doi.org/10.1109/ALLERTON.2010.5707016
http://dx.doi.org/10.1515/jmc-2012-0016
http://dx.doi.org/10.1109/ISIT.2012.6283597
http://dx.doi.org/10.1109/TIT.2014.2310477
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/11558859_28
http://dx.doi.org/10.1007/11558859_28
http://books.google.nl/books/about/Sphere_Packings_Lattices_and_Groups.html?id=upYwZ6cQumoC&redir_esc=y
http://books.google.nl/books/about/Sphere_Packings_Lattices_and_Groups.html?id=upYwZ6cQumoC&redir_esc=y
http://books.google.nl/books/about/Sphere_Packings_Lattices_and_Groups.html?id=upYwZ6cQumoC&redir_esc=y
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471241954.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471241954.html

BIBLIOGRAPHY 205

[CvD10] Andrew M. Childs and Wim van Dam. Quantum algorithms for algebraic
problems. Reviews of Modern Physics, 82(1):1–52, 2010. doi:10.1103/
RevModPhys.82.1.

[CXFF09] Ana Charpentier, Fuchun Xie, Caroline Fontaine, and Teddy Furon. Ex-
pectation maximization decoding of Tardos probabilistic fingerprinting
code. In SPIE Media Forensics and Security, pages 1–15, 2009. doi:
10.1117/12.806034.

[Dam06] Peter Damaschke. Threshold group testing. In General Theory of Informa-
tion Transfer and Combinatorics, pages 707–718, 2006. doi:10.1007/
11889342_45.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. In CRYPTO, pages 40–56, 2013.
doi:10.1007/978-3-642-40041-4_3.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976. doi:
10.1109/TIT.1976.1055638.

[DHPG13] Mathieu Desoubeaux, Cédric Herzet, William Puech, and Gaëtan Le
Guelvouit. Enhanced blind decoding of Tardos codes with new MAP-based
functions. In MMSP, pages 283–288, 2013. doi:10.1109/MMSP.2013.
6659302.

[Dor43] Robert Dorfman. The detection of defective members of large populations.
The Annals of Mathematical Statistics, 14(4):436–440, 1943. URL: http:
//www.jstor.org/stable/2235930.

[DTTZ14] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. An-
alyze Gauss: Optimal bounds for privacy-preserving principal compo-
nent analysis. In STOC, pages 11–20, 2014. doi:10.1145/2591796.
2591883.

[Dub10] Moshe Dubiner. Bucketing coding and information theory for the statis-
tical high-dimensional nearest-neighbor problem. IEEE Transactions on
Information Theory, 56(8):4166–4179, Aug 2010. doi:10.1109/TIT.
2010.2050814.

[Duc15] Léo Ducas. Private communication, 2015.

[FBB+14] Robert Fitzpatrick, Christian Bischof, Johannes Buchmann, Özgür Dagde-
len, Florian Göpfert, Artur Mariano, and Bo-Yin Yang. Tuning GaussSieve
for speed. In LATINCRYPT, pages 288–305, 2014. URL: http://eprint.
iacr.org/2014/788.

[FD14] Teddy Furon and Mathieu Desoubeaux. Tardos codes for real. In WIFS,
pages 24–29, 2014. doi:10.1109/WIFS.2014.7084298.

http://dx.doi.org/10.1103/RevModPhys.82.1
http://dx.doi.org/10.1103/RevModPhys.82.1
http://dx.doi.org/10.1117/12.806034
http://dx.doi.org/10.1117/12.806034
http://dx.doi.org/10.1007/11889342_45
http://dx.doi.org/10.1007/11889342_45
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/MMSP.2013.6659302
http://dx.doi.org/10.1109/MMSP.2013.6659302
http://www.jstor.org/stable/2235930
http://www.jstor.org/stable/2235930
http://dx.doi.org/10.1145/2591796.2591883
http://dx.doi.org/10.1145/2591796.2591883
http://dx.doi.org/10.1109/TIT.2010.2050814
http://dx.doi.org/10.1109/TIT.2010.2050814
http://eprint.iacr.org/2014/788
http://eprint.iacr.org/2014/788
http://dx.doi.org/10.1109/WIFS.2014.7084298

206 BIBLIOGRAPHY

[FGC08] Teddy Furon, Arnaud Guyader, and Frédéric Cérou. On the design and
optimization of Tardos probabilistic fingerprinting codes. In IH, pages
341–356, 2008. doi:10.1007/978-3-540-88961-8_24.

[FGC12] Teddy Furon, Arnaud Guyader, and Frédéric Cérou. Decoding fingerprints
using the Markov chain Monte Carlo method. In WIFS, pages 187–192,
2012. doi:10.1109/WIFS.2012.6412647.

[FP85] Ulrich Fincke and Michael Pohst. Improved methods for calculat-
ing vectors of short length in a lattice. Mathematics of Computation,
44(170):463–471, 1985. URL: http://www.jstor.org/stable/
2007966.

[FPF09a] Teddy Furon and Luis Pérez-Freire. EM decoding of Tardos traitor trac-
ing codes. In MMSec, pages 99–106, 2009. doi:10.1145/1597817.
1597835.

[FPF09b] Teddy Furon and Luis Pérez-Freire. Worst case attacks against binary
probabilistic traitor tracing codes. In WIFS, pages 56–60, 2009. doi:
10.1109/WIFS.2009.5386484.

[FPFGC09] Teddy Furon, Luis Pérez-Freire, Arnaud Guyader, and Frédéric Cérou. Es-
timating the minimal length of Tardos code. In IH, pages 176–190, 2009.
doi:10.1007/978-3-642-04431-1_13.

[FT99] Amos Fiat and Tamir Tassa. Dynamic traitor tracing. In CRYPTO, pages
354–371, 1999. doi:10.1007/3-540-48405-1_23.

[FT01] Amos Fiat and Tamir Tassa. Dynamic traitor tracing. Journal of Cryptology,
14(3):211–223, 2001. doi:10.1007/s00145-001-0006-7.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009. doi:10.1145/1536414.1536440.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In EUROCRYPT, pages 1–17, 2013. doi:10.1007/
978-3-642-38348-9_1.

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins University Press, 1996. URL: https://jhupbooks.press.
jhu.edu/content/matrix-computations.

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random
access memory. Physical Review Letters, 100(16):160501, 2008. doi:
10.1103/PhysRevLett.100.160501.

[GMGPG+14] Oscar García-Morchón, Domingo Gómez-Perez, Jaime Gutiérrez, Ronald
Rietman, Berry Schoenmakers, and Ludo Tolhuizen. HIMMO – a
lightweight collusion-resistant key predistribution scheme. Cryptology
ePrint Archive, Report 2014/698, pages 1–28, 2014. URL: https://
eprint.iacr.org/2014/698.

http://dx.doi.org/10.1007/978-3-540-88961-8_24
http://dx.doi.org/10.1109/WIFS.2012.6412647
http://www.jstor.org/stable/2007966
http://www.jstor.org/stable/2007966
http://dx.doi.org/10.1145/1597817.1597835
http://dx.doi.org/10.1145/1597817.1597835
http://dx.doi.org/10.1109/WIFS.2009.5386484
http://dx.doi.org/10.1109/WIFS.2009.5386484
http://dx.doi.org/10.1007/978-3-642-04431-1_13
http://dx.doi.org/10.1007/3-540-48405-1_23
http://dx.doi.org/10.1007/s00145-001-0006-7
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
https://jhupbooks.press.jhu.edu/content/matrix-computations
https://jhupbooks.press.jhu.edu/content/matrix-computations
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1103/PhysRevLett.100.160501
https://eprint.iacr.org/2014/698
https://eprint.iacr.org/2014/698

BIBLIOGRAPHY 207

[GNR10] Nicolas Gama, Phong Q. Nguyễn, and Oded Regev. Lattice enumeration
using extreme pruning. In EUROCRYPT, pages 257–278, 2010. doi:
10.1007/978-3-642-13190-5_13.

[Gov04] Zakkula Govindarajulu. Sequential Statistics. World Scientific,
2004. URL: http://www.worldscientific.com/worldscibooks/
10.1142/5575.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In STOC, pages 197–206,
2008. doi:10.1145/1374376.1374407.

[GR04] Lov K. Grover and Terry Rudolph. How significant are the known colli-
sion and element distinctness quantum algorithms. Quantum Information
and Computation, 4(3):201–206, 2004. URL: http://dl.acm.org/
citation.cfm?id=2011617.2011622.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In STOC, pages 212–219, 1996. doi:10.1145/237814.237866.

[Hal02] Sean Hallgren. Polynomial-time quantum algorithms for Pell’s equation
and the principal ideal problem. In STOC, pages 653–658, 2002. doi:
10.1145/509907.510001.

[HHGPW10] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, and William Whyte.
Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign, chap-
ter 11, pages 349–390. In Nguyên and Vallée [NV10], 2010. doi:
10.1007/978-3-642-02295-1_11.

[HM09a] Yen-Wei Huang and Pierre Moulin. Capacity-achieving fingerprint decod-
ing. In WIFS, pages 51–55, 2009. doi:10.1109/WIFS.2009.5386483.

[HM09b] Yen-Wei Huang and Pierre Moulin. Saddle-point solution of the finger-
printing capacity game under the marking assumption. In ISIT, pages
2256–2260, 2009. doi:10.1109/ISIT.2009.5205882.

[HM10] Yen-Wei Huang and Pierre Moulin. Maximin optimality of the arcsine fin-
gerprinting distribution and the interleaving attack for large coalitions. In
WIFS, pages 1–6, 2010. doi:10.1109/WIFS.2010.5711451.

[HM12a] Yen-Wei Huang and Pierre Moulin. On fingerprinting capacity games for
arbitrary alphabets and their asymptotics. In ISIT, pages 2571–2575,
2012. doi:10.1109/ISIT.2012.6283982.

[HM12b] Yen-Wei Huang and Pierre Moulin. On the saddle-point solution and the
large-coalition asymptotics of fingerprinting games. IEEE Transactions on
Information Forensics and Security, 7(1):160–175, 2012. doi:10.1109/
TIFS.2011.2168212.

http://dx.doi.org/10.1007/978-3-642-13190-5_13
http://dx.doi.org/10.1007/978-3-642-13190-5_13
http://www.worldscientific.com/worldscibooks/10.1142/5575
http://www.worldscientific.com/worldscibooks/10.1142/5575
http://dx.doi.org/10.1145/1374376.1374407
http://dl.acm.org/citation.cfm?id=2011617.2011622
http://dl.acm.org/citation.cfm?id=2011617.2011622
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/509907.510001
http://dx.doi.org/10.1145/509907.510001
http://dx.doi.org/10.1007/978-3-642-02295-1_11
http://dx.doi.org/10.1007/978-3-642-02295-1_11
http://dx.doi.org/10.1109/WIFS.2009.5386483
http://dx.doi.org/10.1109/ISIT.2009.5205882
http://dx.doi.org/10.1109/WIFS.2010.5711451
http://dx.doi.org/10.1109/ISIT.2012.6283982
http://dx.doi.org/10.1109/TIFS.2011.2168212
http://dx.doi.org/10.1109/TIFS.2011.2168212

208 BIBLIOGRAPHY

[HM14] Yen-Wei Huang and Pierre Moulin. On the fingerprinting capacity games
for arbitrary alphabets and their asymptotics. IEEE Transactions on Infor-
mation Forensics and Security, 9(9):1477–1490, 2014. doi:10.1109/
TIFS.2014.2338739.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-
based public key cryptosystem. In ANTS, pages 267–288, 1998. doi:
10.1007/BFb0054868.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the
shortest and closest lattice vector problems. In IWCC, pages 159–190,
2011. doi:10.1007/978-3-642-20901-7_10.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan’s
shortest lattice vector algorithm. In CRYPTO, pages 170–186, 2007. doi:
10.1007/978-3-540-74143-5_10.

[HS10] Guillaume Hanrot and Damien Stehlé. A complete worst-case anal-
ysis of Kannan’s shortest lattice vector algorithm. Manuscript, pages
1–34, 2010. URL: http://perso.ens-lyon.fr/damien.stehle/
KANNAN_EXTENDED.html.

[Hwa76] Frank K. Hwang. Group testing with a dilution effect. Biometrika,
63(3):671–680, 1976. doi:10.1093/biomet/63.3.671.

[IKMT14] Tsukasa Ishiguro, Shinsaku Kiyomoto, Yutaka Miyake, and Tsuyoshi Tak-
agi. Parallel Gauss Sieve algorithm: Solving the SVP challenge over
a 128-dimensional ideal lattice. In PKC, pages 411–428, 2014. doi:
10.1007/978-3-642-54631-0_24.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: To-
wards removing the curse of dimensionality. In STOC, pages 604–613,
1998. doi:10.1145/276698.276876.

[IŠO14] Sarah Ibrahimi, Boris Škorić, and Jan-Jaap Oosterwijk. Riding the sad-
dle point: Asymptotics of the capacity-achieving simple decoder for bias-
based traitor tracing. EURASIP Journal on Information Security, 1(12):1–
11, 2014. doi:10.1186/s13635-014-0012-6.

[JT00] Christoper Jennison and Bruce W. Turnbull. Group Sequential Methods
with Applications to Clinical Trials. Chapman and Hall, 2000. URL: http:
//www.crcpress.com/product/isbn/9780849303166.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and re-
lated lattice problems. In STOC, pages 193–206, 1983. doi:10.1145/
800061.808749.

[Kap15] Michael Kapralov. Smooth tradeoffs between insert and query complexity
in nearest neighbor search. In PODS, pages 329–342, 2015. doi:10.
1145/2745754.2745761.

http://dx.doi.org/10.1109/TIFS.2014.2338739
http://dx.doi.org/10.1109/TIFS.2014.2338739
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/978-3-642-20901-7_10
http://dx.doi.org/10.1007/978-3-540-74143-5_10
http://dx.doi.org/10.1007/978-3-540-74143-5_10
http://perso.ens-lyon.fr/damien.stehle/KANNAN_EXTENDED.html
http://perso.ens-lyon.fr/damien.stehle/KANNAN_EXTENDED.html
http://dx.doi.org/10.1093/biomet/63.3.671
http://dx.doi.org/10.1007/978-3-642-54631-0_24
http://dx.doi.org/10.1007/978-3-642-54631-0_24
http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1186/s13635-014-0012-6
http://www.crcpress.com/product/isbn/9780849303166
http://www.crcpress.com/product/isbn/9780849303166
http://dx.doi.org/10.1145/800061.808749
http://dx.doi.org/10.1145/800061.808749
http://dx.doi.org/10.1145/2745754.2745761
http://dx.doi.org/10.1145/2745754.2745761

BIBLIOGRAPHY 209

[KB80] Rob Kaas and J.M. Buhrman. Mean, median and mode in binomial dis-
tributions. Statistica Neerlandica, 34(1):13–18, 1980. doi:10.1111/j.
1467-9574.1980.tb00681.x.

[KHN+08] Takashi Kitagawa, Manabu Hagiwara, Koji Nuida, Hajime Watanabe, and
Hideki Imai. A group testing based deterministic tracing algorithm for
a short random fingerprint code. In ISITA, pages 1–5, 2008. doi:10.
1109/ISITA.2008.4895500.

[Kho04a] Subhash Khot. Hardness of approximating the shortest vector problem in
lattices. In FOCS, pages 126–135, 2004. doi:10.1109/FOCS.2004.31.

[Kho04b] Subhash Khot. Hardness of approximating the shortest vector problem
in lattices. Journal of the ACM, 52(5):789–808, 2004. doi:10.1145/
1089023.1089027.

[Kle00] Philip Klein. Finding the closest lattice vector when it’s unusually close. In
SODA, pages 937–941, 2000. URL: http://dl.acm.org/citation.
cfm?id=338661.

[Kle14] Thorsten Kleinjung. Private communication, 2014.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihe-
dral hidden subgroup problem. SIAM Journal on Computing, 35(1):170–
188, 2005. doi:10.1137/S0097539703436345.

[Kup13] Greg Kuperberg. Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. In TQC, pages 1–10, 2013. doi:
10.4230/LIPIcs.TQC.2013.20.

[Kur13] Minoru Kuribayashi. Bias equalizer for binary probabilistic finger-
printing codes. In IH, pages 269–283, 2013. doi:10.1007/
978-3-642-36373-3.

[Laa13a] Thijs Laarhoven. Dynamic traitor tracing schemes, revisited. In WIFS,
pages 191–196, 2013. doi:10.1109/WIFS.2013.6707817.

[Laa13b] Thijs Laarhoven. Efficient probabilistic group testing based on traitor
tracing. In ALLERTON, pages 1358–1365, 2013. doi:10.1109/
Allerton.2013.6736699.

[Laa14] Thijs Laarhoven. Capacities and capacity-achieving decoders for various
fingerprinting games. In IH&MMSec, pages 123–134, 2014. doi:10.
1145/2600918.2600925.

[Laa15a] Thijs Laarhoven. Asymptotics of fingerprinting and group testing: Tight
bounds from channel capacities. IEEE Transactions on Information Foren-
sics and Security, 10(9):1967–1980, 2015. doi:10.1109/TIFS.2015.
2440190.

[Laa15b] Thijs Laarhoven. Optimal sequential fingerprinting: Wald vs. Tardos. In
IH&MMSec, pages 97–107, 2015. doi:10.1145/2756601.2756603.

http://dx.doi.org/10.1111/j.1467-9574.1980.tb00681.x
http://dx.doi.org/10.1111/j.1467-9574.1980.tb00681.x
http://dx.doi.org/10.1109/ISITA.2008.4895500
http://dx.doi.org/10.1109/ISITA.2008.4895500
http://dx.doi.org/10.1109/FOCS.2004.31
http://dx.doi.org/10.1145/1089023.1089027
http://dx.doi.org/10.1145/1089023.1089027
http://dl.acm.org/citation.cfm?id=338661
http://dl.acm.org/citation.cfm?id=338661
http://dx.doi.org/10.1137/S0097539703436345
http://dx.doi.org/10.4230/LIPIcs.TQC.2013.20
http://dx.doi.org/10.4230/LIPIcs.TQC.2013.20
http://dx.doi.org/10.1007/978-3-642-36373-3
http://dx.doi.org/10.1007/978-3-642-36373-3
http://dx.doi.org/10.1109/WIFS.2013.6707817
http://dx.doi.org/10.1109/Allerton.2013.6736699
http://dx.doi.org/10.1109/Allerton.2013.6736699
http://dx.doi.org/10.1145/2600918.2600925
http://dx.doi.org/10.1145/2600918.2600925
http://dx.doi.org/10.1109/TIFS.2015.2440190
http://dx.doi.org/10.1109/TIFS.2015.2440190
http://dx.doi.org/10.1145/2756601.2756603

210 BIBLIOGRAPHY

[Laa15c] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In CRYPTO, pages 3–22, 2015. doi:10.1007/
978-3-662-47989-6_1.

[Laa16] Thijs Laarhoven. Asymptotics of fingerprinting and group test-
ing: Capacity-achieving log-likelihood decoders. EURASIP Jour-
nal on Information Security, 2016(3):1–15, 2016. doi:10.1186/
s13635-015-0026-8.

[LDR+13] Thijs Laarhoven, Jeroen Doumen, Peter Roelse, Boris Škorić, and Benne
de Weger. Dynamic Tardos traitor tracing schemes. IEEE Transactions
on Information Theory, 59(7):4230–4242, 2013. doi:10.1109/TIT.
2013.2251756.

[LdW13] Thijs Laarhoven and Benne de Weger. Discrete distributions in the Tardos
scheme, revisited. In IH&MMSec, pages 13–18, 2013. doi:10.1145/
2482513.2482533.

[LdW14] Thijs Laarhoven and Benne de Weger. Optimal symmetric Tardos traitor
tracing schemes. Designs, Codes and Cryptography, 71(1):83–103, 2014.
doi:10.1007/s10623-012-9718-y.

[LdW15] Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice
vectors using spherical locality-sensitive hashing. In LATINCRYPT, pages
101–118, 2015. doi:10.1007/978-3-319-22174-8_6.

[Leb10] Vladimir S. Lebedev. Separating codes and a new combinatorial search
model. Problems of Information Transmission, 46(1):1–6, 2010. doi:
10.1134/S0032946010010011.

[LHC06] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random
projections. In KDD, pages 287–296, 2006. doi:10.1145/1150402.
1150436.

[LJW+07] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-
probe LSH: efficient indexing for high-dimensional similarity search. In
VLDB, pages 950–961, 2007. URL: http://dl.acm.org/citation.
cfm?id=1325958.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring polyno-
mials with rational coefficients. Mathematische Annalen, 261(4):515–534,
1982. doi:10.1007/BF01457454.

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic
functional by model selection. Annals of Statistics, 28(5):1302–1338,
2000. doi:10.1214/aos/1015957395.

[LMvdP13] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Solving the short-
est vector problem in lattices faster using quantum search. In PQCrypto,
pages 83–101, 2013. doi:10.1007/978-3-642-38616-9_6.

http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1186/s13635-015-0026-8
http://dx.doi.org/10.1186/s13635-015-0026-8
http://dx.doi.org/10.1109/TIT.2013.2251756
http://dx.doi.org/10.1109/TIT.2013.2251756
http://dx.doi.org/10.1145/2482513.2482533
http://dx.doi.org/10.1145/2482513.2482533
http://dx.doi.org/10.1007/s10623-012-9718-y
http://dx.doi.org/10.1007/978-3-319-22174-8_6
http://dx.doi.org/10.1134/S0032946010010011
http://dx.doi.org/10.1134/S0032946010010011
http://dx.doi.org/10.1145/1150402.1150436
http://dx.doi.org/10.1145/1150402.1150436
http://dl.acm.org/citation.cfm?id=1325958
http://dl.acm.org/citation.cfm?id=1325958
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1214/aos/1015957395
http://dx.doi.org/10.1007/978-3-642-38616-9_6

BIBLIOGRAPHY 211

[LMvdP15] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest
lattice vectors faster using quantum search. Designs, Codes and Cryptog-
raphy, 77(2):375–400, 2015. doi:10.1007/s10623-015-0067-5.

[LOD12] Thijs Laarhoven, Jan-Jaap Oosterwijk, and Jeroen Doumen. Dynamic
traitor tracing for arbitrary alphabets: Divide and conquer. In WIFS, pages
240–245, 2012. doi:10.1109/WIFS.2012.6412656.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-
based encryption. In CT-RSA, pages 319–339, 2011. doi:10.1007/
978-3-642-19074-2_21.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In EUROCRYPT, pages 1–23, 2010.
doi:10.1007/978-3-642-13190-5_1.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In EUROCRYPT, pages 35–54, 2013. doi:10.1007/
978-3-642-38348-9_3.

[Lud03] Christoph Ludwig. A faster lattice reduction method using quan-
tum search. In ISAAC, pages 199–208, 2003. doi:10.1007/
978-3-540-24587-2_22.

[LvdPdW12] Thijs Laarhoven, Joop van de Pol, and Benne de Weger. Solving hard
lattice problems and the security of lattice-based cryptosystems. Cryp-
tology ePrint Archive, Report 2012/533, pages 1–43, 2012. URL: http:
//eprint.iacr.org/2012/533.

[LWXZ11] Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest
lattice vectors in the presence of gaps. Cryptology ePrint Archive, Report
2011/039, pages 1–22, 2011. URL: http://eprint.iacr.org/2011/
139.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755, 2012. doi:10.1007/978-3-642-29011-4_
43.

[Maa93] Theo Maassen. Bepaalde dingen. Cabaretvoorstelling, 1993.

[Mal78] Mikhail B. Malyutov. The separating property of random matrices. Math-
ematical notes of the Academy of Sciences of the USSR, 23(1):84–91, 1978.
doi:10.1007/BF01104893.

[Mar90] Alexander L. Marshak. Asymptotic representation of the weights in the
Gauss quadrature formula. Mathematical notes of the Academy of Sciences
of the USSR, 47(4):354–358, 1990. doi:10.1007/BF01163817.

[McK15] Brendan D. McKay. Expected centered entropy of the binomial distribu-
tion, 2015. URL: http://mathoverflow.net/a/200287/11259.

http://dx.doi.org/10.1007/s10623-015-0067-5
http://dx.doi.org/10.1109/WIFS.2012.6412656
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-540-24587-2_22
http://dx.doi.org/10.1007/978-3-540-24587-2_22
http://eprint.iacr.org/2012/533
http://eprint.iacr.org/2012/533
http://eprint.iacr.org/2011/139
http://eprint.iacr.org/2011/139
http://dx.doi.org/10.1007/978-3-642-29011-4_43
http://dx.doi.org/10.1007/978-3-642-29011-4_43
http://dx.doi.org/10.1007/BF01104893
http://dx.doi.org/10.1007/BF01163817
http://mathoverflow.net/a/200287/11259

212 BIBLIOGRAPHY

[MF11a] Peter Meerwald and Teddy Furon. Group testing meets traitor tracing.
In ICASSP, pages 4204–4207, 2011. doi:10.1109/ICASSP.2011.
5947280.

[MF11b] Peter Meerwald and Teddy Furon. Towards joint Tardos decoding: The
’Don Quixote’ algorithm. In IH, pages 28–42, 2011. doi:10.1007/
978-3-642-24178-9_3.

[MF12] Peter Meerwald and Teddy Furon. Toward practical joint decoding of bi-
nary Tardos fingerprinting codes. IEEE Transactions on Information Foren-
sics and Security, 7(4):1168–1180, 2012. doi:10.1109/TIFS.2012.
2195655.

[Mic98] Daniele Micciancio. The shortest vector in a lattice is hard to approximate
to within some constant. In FOCS, pages 92–98, 1998. doi:10.1109/
SFCS.1998.743432.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem,
and applications to Ajtai’s connection factor. SIAM Journal of Computing,
34(1):118–169, 2004. doi:10.1137/S0097539703433511.

[MLB15] Artur Mariano, Thijs Laarhoven, and Christian Bischof. Parallel (prob-
able) lock-free HashSieve: a practical sieving algorithm for the SVP. In
ICPP, pages 590–599, 2015. URL: https://eprint.iacr.org/2015/
041.

[MNP07] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on local-
ity sensitive hashing. SIAM Journal of Discrete Mathematics, 21(4):930–
935, 2007. doi:10.1137/050646858.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In EUROCRYPT, pages
203–228, 2015. doi:10.1007/978-3-662-46800-5_9.

[MODB14] Artur Mariano, Özgür Dagdelen, and Christian Bischof. A comprehensive
empirical comparison of parallel ListSieve and GaussSieve. In Euro-Par
2014, pages 48–59, 2014. doi:10.1007/978-3-319-14325-5_5.

[Mos09] Michele Mosca. Encyclopedia of Complexity and Systems Science, chapter
Quantum Algorithms, pages 7088–7118. Springer, 2009. doi:10.1007/
978-0-387-30440-3_423.

[Mou08] Pierre Moulin. Universal fingerprinting: Capacity and random-coding
exponents. arXiv:0801.3837 [cs.IT], pages 1–69, 2008. URL: http:
//arxiv.org/abs/0801.3837.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on Gaussian measures. SIAM Journal on Computing,
37(1):267–302, 2007. doi:10.1137/S0097539705447360.

http://dx.doi.org/10.1109/ICASSP.2011.5947280
http://dx.doi.org/10.1109/ICASSP.2011.5947280
http://dx.doi.org/10.1007/978-3-642-24178-9_3
http://dx.doi.org/10.1007/978-3-642-24178-9_3
http://dx.doi.org/10.1109/TIFS.2012.2195655
http://dx.doi.org/10.1109/TIFS.2012.2195655
http://dx.doi.org/10.1109/SFCS.1998.743432
http://dx.doi.org/10.1109/SFCS.1998.743432
http://dx.doi.org/10.1137/S0097539703433511
https://eprint.iacr.org/2015/041
https://eprint.iacr.org/2015/041
http://dx.doi.org/10.1137/050646858
http://dx.doi.org/10.1007/978-3-662-46800-5_9
http://dx.doi.org/10.1007/978-3-319-14325-5_5
http://dx.doi.org/10.1007/978-0-387-30440-3_423
http://dx.doi.org/10.1007/978-0-387-30440-3_423
http://arxiv.org/abs/0801.3837
http://arxiv.org/abs/0801.3837
http://dx.doi.org/10.1137/S0097539705447360

BIBLIOGRAPHY 213

[MR09] Daniele Micciancio and Oded Regev. Lattice-Based Cryptography, chap-
ter 5, pages 147–191. In Bernstein et al. [BBD09], 2009. doi:10.1007/
978-3-540-88702-7_5.

[MS09] Nitis Mukhopadhyay and Basil M. De Silva. Sequential Methods
and Their Applications. CRC Press, 2009. URL: http://books.
google.nl/books?hl=nl&lr=&id=PYNKPyqiyfYC&oi=fnd&pg=
PA1&ots=1n0-icxnBl&sig=Hp-Lgb-hrni714fzrzDpSDvse2Y#v=
onepage&q&f=false.

[MS11] Benjamin Milde and Michael Schneider. A parallel implementation of
GaussSieve for the shortest vector problem in lattices. In PACT, pages
452–458, 2011. doi:10.1007/978-3-642-23178-0_40.

[MTB14] Artur Mariano, Shahar Timnat, and Christian Bischof. Lock-free
GaussSieve for linear speedups in parallel high performance SVP calcu-
lation. In SBAC-PAD, pages 278–285, 2014. doi:10.1109/SBAC-PAD.
2014.18.

[MV10a] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single ex-
ponential time algorithm for most lattice problems based on Voronoi
cell computations. In STOC, pages 351–358, 2010. doi:10.1145/
1806689.1806739.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time al-
gorithms for the shortest vector problem. In SODA, pages 1468–1480,
2010. URL: http://dl.acm.org/citation.cfm?id=1873720.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration
with minimal overhead. In SODA, pages 276–294, 2015. doi:10.1137/
1.9781611973730.21.

[NFH+09] Koji Nuida, Satoshi Fujitsu, Manabu Hagiwara, Takashi Kitagawa, Hajime
Watanabe, Kazuto Ogawa, and Hideki Imai. An improvement of discrete
Tardos fingerprinting codes. Designs, Codes and Cryptography, 52(3):339–
362, 2009. doi:10.1007/s10623-009-9285-z.

[Ngu14] Huy Lê Nguyễn. Algorithms for High Dimensional Data. PhD the-
sis, Princeton University, 2014. URL: http://arks.princeton.edu/
ark:/88435/dsp01b8515q61f.

[NHWI07] Koji Nuida, Manabu Hagiwara, Hajime Watanabe, and Hideki Imai.
Optimization of Tardos’s fingerprinting codes in a viewpoint of mem-
ory amount. In IH, pages 279–293, 2007. doi:10.1007/
978-3-540-77370-2_19.

[NP33] Jerzy Neyman and Egon Sharpe Pearson. On the problem of the most
efficient tests of statistical hypotheses. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, 231(694-706):289–337, 1933. doi:10.1098/rsta.
1933.0009.

http://dx.doi.org/10.1007/978-3-540-88702-7_5
http://dx.doi.org/10.1007/978-3-540-88702-7_5
http://books.google.nl/books?hl=nl&lr=&id=PYNKPyqiyfYC&oi=fnd&pg=PA1&ots=1n0-icxnBl&sig=Hp-Lgb-hrni714fzrzDpSDvse2Y#v=onepage&q&f=false
http://books.google.nl/books?hl=nl&lr=&id=PYNKPyqiyfYC&oi=fnd&pg=PA1&ots=1n0-icxnBl&sig=Hp-Lgb-hrni714fzrzDpSDvse2Y#v=onepage&q&f=false
http://books.google.nl/books?hl=nl&lr=&id=PYNKPyqiyfYC&oi=fnd&pg=PA1&ots=1n0-icxnBl&sig=Hp-Lgb-hrni714fzrzDpSDvse2Y#v=onepage&q&f=false
http://books.google.nl/books?hl=nl&lr=&id=PYNKPyqiyfYC&oi=fnd&pg=PA1&ots=1n0-icxnBl&sig=Hp-Lgb-hrni714fzrzDpSDvse2Y#v=onepage&q&f=false
http://dx.doi.org/10.1007/978-3-642-23178-0_40
http://dx.doi.org/10.1109/SBAC-PAD.2014.18
http://dx.doi.org/10.1109/SBAC-PAD.2014.18
http://dx.doi.org/10.1145/1806689.1806739
http://dx.doi.org/10.1145/1806689.1806739
http://dl.acm.org/citation.cfm?id=1873720
http://dx.doi.org/10.1137/1.9781611973730.21
http://dx.doi.org/10.1137/1.9781611973730.21
http://dx.doi.org/10.1007/s10623-009-9285-z
http://arks.princeton.edu/ark:/88435/dsp01b8515q61f
http://arks.princeton.edu/ark:/88435/dsp01b8515q61f
http://dx.doi.org/10.1007/978-3-540-77370-2_19
http://dx.doi.org/10.1007/978-3-540-77370-2_19
http://dx.doi.org/10.1098/rsta.1933.0009
http://dx.doi.org/10.1098/rsta.1933.0009

214 BIBLIOGRAPHY

[Nui09] Koji Nuida. An improvement of short 2-secure fingerprint codes strongly
avoiding false-positive. In IH, pages 161–175, 2009. doi:10.1007/
978-3-642-04431-1_12.

[Nui10] Koji Nuida. Short collusion-secure fingerprint codes against three pirates.
In IH, pages 86–102, 2010. doi:10.1007/978-3-642-16435-4_8.

[Nui12] Koji Nuida. Short collusion-secure fingerprint codes against three pirates.
International Journal of Information Security, 11(2):85–102, 2012. doi:
10.1007/s10207-012-0155-8.

[NV08] Phong Q. Nguyễn and Thomas Vidick. Sieve algorithms for the short-
est vector problem are practical. Journal of Mathematical Cryptology,
2(2):181–207, 2008. doi:10.1515/JMC.2008.009.

[NV10] Phong Q. Nguyễn and Brigitte Vallée, editors. The LLL Algorithm: Survey
and Applications. Springer, 2010. doi:10.1007/978-3-642-02295-1.

[ODL14] Jan-Jaap Oosterwijk, Jeroen Doumen, and Thijs Laarhoven. Tuple de-
coders for traitor tracing schemes. In SPIE Media Watermarking, Security,
and Forensics, pages 1–21, 2014. doi:10.1117/12.2037659.

[OŠD13] Jan-Jaap Oosterwijk, Boris Škorić, and Jeroen Doumen. Optimal suspicion
functions for Tardos traitor tracing schemes. In IH&MMSec, pages 19–28,
2013. doi:10.1145/2482513.2482527.

[OŠD15] Jan-Jaap Oosterwijk, Boris Škorić, and Jeroen Doumen. A capacity-
achieving simple decoder for bias-based traitor tracing schemes. IEEE
Transactions on Information Theory, 61(7):3882–3900, 2015. doi:10.
1109/TIT.2015.2428250.

[OWZ11] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for lo-
cality sensitive hashing (except when q is tiny). In ICS, pages 276–
283, 2011. URL: http://conference.itcs.tsinghua.edu.cn/
ICS2011/content/papers/2.html.

[OWZ14] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-
sensitive hashing (except when q is tiny). ACM Transactions on Computa-
tion Theory, 6(1):5:1–5:13, 2014. doi:10.1145/2578221.

[Pan06] Rina Panigrahy. Entropy based nearest neighbor search in high dimen-
sions. In SODA, pages 1186–1195, 2006. URL: http://dl.acm.org/
citation.cfm?id=1109688.

[PFF09] Luis Pérez-Freire and Teddy Furon. Blind decoder for binary probabilistic
traitor tracing codes. In WIFS, pages 46–50, 2009. doi:10.1109/WIFS.
2009.5386486.

[Poh81] Michael E. Pohst. On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications. ACM SIGSAM
Bulletin, 15(1):37–44, 1981. doi:10.1145/1089242.1089247.

http://dx.doi.org/10.1007/978-3-642-04431-1_12
http://dx.doi.org/10.1007/978-3-642-04431-1_12
http://dx.doi.org/10.1007/978-3-642-16435-4_8
http://dx.doi.org/10.1007/s10207-012-0155-8
http://dx.doi.org/10.1007/s10207-012-0155-8
http://dx.doi.org/10.1515/JMC.2008.009
http://dx.doi.org/10.1007/978-3-642-02295-1
http://dx.doi.org/10.1117/12.2037659
http://dx.doi.org/10.1145/2482513.2482527
http://dx.doi.org/10.1109/TIT.2015.2428250
http://dx.doi.org/10.1109/TIT.2015.2428250
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/2.html
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/2.html
http://dx.doi.org/10.1145/2578221
http://dl.acm.org/citation.cfm?id=1109688
http://dl.acm.org/citation.cfm?id=1109688
http://dx.doi.org/10.1109/WIFS.2009.5386486
http://dx.doi.org/10.1109/WIFS.2009.5386486
http://dx.doi.org/10.1145/1089242.1089247

BIBLIOGRAPHY 215

[PS08] Xavier Pujol and Damien Stehlé. Rigorous and efficient short lattice vec-
tors enumeration. In ASIACRYPT, pages 390–405, 2008. doi:10.1007/
978-3-540-89255-7_24.

[PS09] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector prob-
lem in time 22.465n. Cryptology ePrint Archive, Report 2009/605, pages
1–7, 2009. URL: http://eprint.iacr.org/2009/605.

[PS15] Thomas Plantard and Michael Schneider. Ideal SVP chal-
lenge, 2015. URL: http://www.latticechallenge.org/
ideallattice-challenge/.

[Raz14] Ilya Razenshteyn. Beyond locality-sensitive hashing. Master’s thesis, MIT,
2014. URL: http://hdl.handle.net/1721.1/89862.

[Reg04a] Oded Regev. Quantum computation and lattice problems. SIAM
Journal on Computing, 33(3):738–760, 2004. doi:10.1137/
S0097539703440678.

[Reg04b] Oded Regev. A subexponential time algorithm for the dihedral hidden sub-
group problem with polynomial space. arXiv:quant-ph/0406151, pages
1–7, 2004. URL: http://arxiv.org/abs/quant-ph/0406151.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93, 2005. doi:10.1145/1060590.
1060603.

[Reg06] Oded Regev. Lattice-based cryptography. In CRYPTO, pages 131–141,
2006. doi:10.1007/11818175_8.

[Reg10] Oded Regev. The learning with errors problem (invited survey). In CCC,
pages 191–204, 2010. doi:10.1109/CCC.2010.26.

[Roe11] Peter Roelse. Dynamic subtree tracing and its application in pay-TV sys-
tems. International Journal of Information Security, 10(3):173–187, 2011.
doi:10.1007/s10207-011-0126-5.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-
based cryptosystems. Cryptology ePrint Archive, Report 2010/137, pages
1–33, 2010. URL: http://eprint.iacr.org/2010/137.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978. doi:10.1145/359340.359342.

[SBM05] Anelia Somekh-Baruch and Neri Merhav. On the capacity game of pri-
vate fingerprinting systems under collusion attacks. IEEE Transactions on
Information Theory, 51(3):884–899, 2005. doi:10.1109/TIT.2004.
842702.

http://dx.doi.org/10.1007/978-3-540-89255-7_24
http://dx.doi.org/10.1007/978-3-540-89255-7_24
http://eprint.iacr.org/2009/605
http://www.latticechallenge.org/ideallattice-challenge/
http://www.latticechallenge.org/ideallattice-challenge/
http://hdl.handle.net/1721.1/89862
http://dx.doi.org/10.1137/S0097539703440678
http://dx.doi.org/10.1137/S0097539703440678
http://arxiv.org/abs/quant-ph/0406151
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1007/11818175_8
http://dx.doi.org/10.1109/CCC.2010.26
http://dx.doi.org/10.1007/s10207-011-0126-5
http://eprint.iacr.org/2010/137
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TIT.2004.842702
http://dx.doi.org/10.1109/TIT.2004.842702

216 BIBLIOGRAPHY

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theoretical Computer Science, 53(2–3):201–224, 1987. doi:
10.1016/0304-3975(87)90064-8.

[Sch03] Hans-Georg Schaathun. Fighting two pirates. In AAECC, pages 71–78,
2003. doi:10.1007/3-540-44828-4_9.

[Sch04] Hans-Georg Schaathun. Fighting three pirates with scattering codes. In
ISIT, page 203, 2004. doi:10.1109/ISIT.2004.1365240.

[Sch08] Hans-Georg Schaathun. On the assumption of equal contributions in
fingerprinting. IEEE Transactions on Information Forensics and Security,
3(3):569–572, 2008. doi:10.1109/TIFS.2008.926991.

[Sch11] Michael Schneider. Analysis of Gauss-Sieve for solving the shortest vector
problem in lattices. In WALCOM, pages 89–97, 2011. doi:10.1007/
978-3-642-19094-0_11.

[Sch13] Michael Schneider. Sieving for short vectors in ideal lat-
tices. In AFRICACRYPT, pages 375–391, 2013. doi:10.1007/
978-3-642-38553-7_22.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Mathemati-
cal Programming, 66(2–3):181–199, 1994. doi:10.1007/BF01581144.

[Seb85] András Sebő. On two random search problems. Journal of Statistical Plan-
ning and Inference, 11(1):23–31, 1985. doi:10.1016/0378-3758(85)
90022-9.

[SG15] Michael Schneider and Nicolas Gama. SVP challenge, 2015. URL: http:
//latticechallenge.org/svp-challenge/.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In FOCS, pages 124–134, 1994. doi:10.1109/SFCS.
1994.365700.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, 1997. doi:10.1137/S0097539795293172.

[Sho15] Victor Shoup. NTL: A library for doing number theory, 2015. URL: http:
//www.shoup.net/ntl/.

[Sie85] David Siegmund. Sequential Analysis, Tests and Confidence Intervals.
Springer, 1985. doi:10.1007/978-1-4757-1862-1.

[Sim14] Antonino Simone. Error probabilities in Tardos codes. PhD thesis, Eind-
hoven University of Technology, 2014. doi:10.6100/IR774667.

http://dx.doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1007/3-540-44828-4_9
http://dx.doi.org/10.1109/ISIT.2004.1365240
http://dx.doi.org/10.1109/TIFS.2008.926991
http://dx.doi.org/10.1007/978-3-642-19094-0_11
http://dx.doi.org/10.1007/978-3-642-19094-0_11
http://dx.doi.org/10.1007/978-3-642-38553-7_22
http://dx.doi.org/10.1007/978-3-642-38553-7_22
http://dx.doi.org/10.1007/BF01581144
http://dx.doi.org/10.1016/0378-3758(85)90022-9
http://dx.doi.org/10.1016/0378-3758(85)90022-9
http://latticechallenge.org/svp-challenge/
http://latticechallenge.org/svp-challenge/
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1137/S0097539795293172
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://dx.doi.org/10.1007/978-1-4757-1862-1
http://dx.doi.org/10.6100/IR774667

BIBLIOGRAPHY 217

[SJ10] Dino Sejdinovic and Oliver Johnson. Note on noisy group testing: Asymp-
totic bounds and belief propagation reconstruction. In ALLERTON, pages
998–1003, 2010. doi:10.1109/ALLERTON.2010.5707018.

[SLH12] Malcolm Slaney, Yury Lifshits, and Junfeng He. Optimal parameters for
locality-sensitive hashing. Proceedings of the IEEE, 100(9):2604–2623,
2012. doi:10.1109/JPROC.2012.2193849.

[SM12] Jamie Smith and Michele Mosca. Handbook of Natural Computing, chapter
Algorithms for Quantum Computers, pages 1451–1492. Springer, 2012.
doi:10.1007/978-3-540-92910-9_43.

[SNW03] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. IEEE
Transactions on Information Theory, 49(5):1319–1326, 2003. doi:10.
1109/TIT.2003.810629.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case
problems over ideal lattices. In EUROCRYPT, pages 27–47, 2011. doi:
10.1007/978-3-642-20465-4_4.

[ŠKC08] Boris Škorić, Stefan Katzenbeisser, and Mehmet U. Celik. Sym-
metric Tardos fingerprinting codes for arbitrary alphabet sizes. De-
signs, Codes and Cryptography, 46(2):137–166, 2008. doi:10.1007/
s10623-007-9142-x.

[Ško14] Boris Škorić. Private communication, 2014.

[Ško15] Boris Škorić. Tally-based simple decoders for traitor tracing and
group testing. IEEE Transactions on Information Forensics and Security,
10(6):1221–1233, 2015. doi:10.1109/TIFS.2015.2403575.

[ŠKSC09] Boris Škorić, Stefan Katzenbeisser, Hans-Georg Schaathun, and
Mehmet U. Celik. Tardos fingerprinting codes in the combined digit
model. In WIFS, pages 41–45, 2009. doi:10.1109/WIFS.2009.
5386485.

[ŠKSC11] Boris Škorić, Stefan Katzenbeisser, Hans-Georg Schaathun, and
Mehmet U. Celik. Tardos fingerprinting codes in the combined digit
model. IEEE Transactions on Information Forensics and Security, 6(3):906–
919, 2011. doi:10.1109/TIFS.2011.2116783.

[ŠO15] Boris Škorić and Jan-Jaap Oosterwijk. Binary and q-ary Tardos codes,
revisited. Designs, Codes and Cryptography, 74(1):75–111, 2015. doi:
10.1007/s10623-013-9842-3.

[SŠ11] Antonino Simone and Boris Škorić. Asymptotically false-positive-
maximizing attack on non-binary Tardos codes. In IH, pages 14–27, 2011.
doi:10.1007/978-3-642-24178-9_2.

[SŠ12] Antonino Simone and Boris Škorić. Accusation probabilities in Tardos
codes: Beyond the Gaussian approximation. Designs, Codes and Cryptog-
raphy, 63(3):379–412, 2012. doi:10.1007/s10623-011-9563-4.

http://dx.doi.org/10.1109/ALLERTON.2010.5707018
http://dx.doi.org/10.1109/JPROC.2012.2193849
http://dx.doi.org/10.1007/978-3-540-92910-9_43
http://dx.doi.org/10.1109/TIT.2003.810629
http://dx.doi.org/10.1109/TIT.2003.810629
http://dx.doi.org/10.1007/978-3-642-20465-4_4
http://dx.doi.org/10.1007/978-3-642-20465-4_4
http://dx.doi.org/10.1007/s10623-007-9142-x
http://dx.doi.org/10.1007/s10623-007-9142-x
http://dx.doi.org/10.1109/TIFS.2015.2403575
http://dx.doi.org/10.1109/WIFS.2009.5386485
http://dx.doi.org/10.1109/WIFS.2009.5386485
http://dx.doi.org/10.1109/TIFS.2011.2116783
http://dx.doi.org/10.1007/s10623-013-9842-3
http://dx.doi.org/10.1007/s10623-013-9842-3
http://dx.doi.org/10.1007/978-3-642-24178-9_2
http://dx.doi.org/10.1007/s10623-011-9563-4

218 BIBLIOGRAPHY

[SŠ14] Antonino Simone and Boris Škorić. False positive probabilities in q-ary
Tardos codes: comparison of attacks. Designs, Codes and Cryptography,
75(3):519–542, 2014. doi:10.1007/s10623-014-9937-5.

[ŠVCT08] Boris Škorić, Tatiana U. Vladimirova, Mehmet U. Celik, and Joop C. Tal-
stra. Tardos fingerprinting is better than we thought. IEEE Transactions
on Information Theory, 54(8):3663–3676, 2008. doi:10.1109/TIT.
2008.926307.

[SU15] Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes
and the hardness of preventing false discovery. In COLT, pages 1588–
1628, 2015. URL: http://jmlr.org/proceedings/papers/v40/
Steinke15.html.

[SvTW00] Douglas R. Stinson, Tran van Trung, and Ruizhong Wei. Secure frame-
proof codes, key distribution patterns, group testing algorithms and re-
lated structures. Journal of Statistical Planning and Inference, 86(2):595–
617, 2000. doi:10.1016/S0378-3758(99)00131-7.

[SW49] Milton Sobel and Abraham Wald. A sequential decision procedure for
choosing one of three hypotheses concerning the unknown mean of a nor-
mal distribution. The Annals of Mathematical Statistics, 20(4):502–522,
1949. URL: http://www.jstor.org/stable/2236307.

[Sze75] Gábor Szegő. Orthogonal Polynomials. American Mathematical Society,
1975. URL: http://books.google.nl/books?id=3hcW8HBh7gsC.

[TABB02] Luca G. Tallini, Sulaiman Al-Bassam, and Bella Bose. On the capacity and
codes for the Z-channel. In ISIT, page 422, 2002. doi:10.1109/ISIT.
2002.1023694.

[Tar03] Gábor Tardos. Optimal probabilistic fingerprint codes. In STOC, pages
116–125, 2003. doi:10.1145/780542.780561.

[Tar08] Gábor Tardos. Optimal probabilistic fingerprint codes. Journal of the ACM,
55(2):1–24, 2008. doi:10.1145/1346330.1346335.

[Tar10] Gábor Tardos. Capacity of collusion secure fingerprinting – a tradeoff
between rate and efficiency. In IH, pages 81–85, 2010. doi:10.1007/
978-3-642-16435-4_7.

[Tas05] Tamir Tassa. Low bandwidth dynamic traitor tracing schemes.
Journal of Cryptology, 18(2):167–183, 2005. doi:10.1007/
s00145-004-0214-z.

[TT07] Kengo Terasawa and Yuzuru Tanaka. Spherical LSH for approximate near-
est neighbor search on unit hypersphere. In WADS, pages 27–38, 2007.
doi:10.1007/978-3-540-73951-7_4.

[TWWL03] Wade Trappe, Min Wu, Z. Jane Wang, and K.J. Ray Liu. Anti-collusion
fingerprinting for multimedia. IEEE Transactions on Signal Processing,
51(4):1069–1087, 2003. doi:10.1109/TSP.2003.809378.

http://dx.doi.org/10.1007/s10623-014-9937-5
http://dx.doi.org/10.1109/TIT.2008.926307
http://dx.doi.org/10.1109/TIT.2008.926307
http://jmlr.org/proceedings/papers/v40/Steinke15.html
http://jmlr.org/proceedings/papers/v40/Steinke15.html
http://dx.doi.org/10.1016/S0378-3758(99)00131-7
http://www.jstor.org/stable/2236307
http://books.google.nl/books?id=3hcW8HBh7gsC
http://dx.doi.org/10.1109/ISIT.2002.1023694
http://dx.doi.org/10.1109/ISIT.2002.1023694
http://dx.doi.org/10.1145/780542.780561
http://dx.doi.org/10.1145/1346330.1346335
http://dx.doi.org/10.1007/978-3-642-16435-4_7
http://dx.doi.org/10.1007/978-3-642-16435-4_7
http://dx.doi.org/10.1007/s00145-004-0214-z
http://dx.doi.org/10.1007/s00145-004-0214-z
http://dx.doi.org/10.1007/978-3-540-73951-7_4
http://dx.doi.org/10.1109/TSP.2003.809378

BIBLIOGRAPHY 219

[Ull13] Jonathan Ullman. Answering n2+o(1) counting queries with differen-
tial privacy is hard. In STOC, pages 361–370, 2013. doi:10.1145/
2488608.2488653.

[vdP11] Joop van de Pol. Lattice-based cryptography. Master’s thesis, Eindhoven
University of Technology, 2011. URL: http://www.cs.bris.ac.uk/
home/csjhvdp/.

[vdPS13] Joop van de Pol and Nigel Smart. Estimating key sizes for high dimen-
sional lattice-based systems. In IMACC, pages 290–303, 2013. doi:
10.1007/978-3-642-45239-0_17.

[Vee12] Meilof Veeningen. Opinie: Laatste trein om kinderbedtijd. Eind-
hovens Dagblad, 11(2), 2012. URL: http://www.ed.nl/mening/
opinie-laatste-trein-om-kinderbedtijd-1.3309468.

[Vee14] Meilof Veeningen. Objective Privacy. PhD thesis, Eindhoven University of
Technology, 2014. doi:10.6100/IR773277.

[Vou11] Panagiotis Voulgaris. Algorithms For The Closest And Shortest Vector Prob-
lems On General Lattices. PhD thesis, University of California at San Diego,
2011. URL: http://escholarship.org/uc/item/4zt7x45z.

[Wal45] Abraham Wald. Sequential tests of statistical hypotheses. The Annals
of Mathematical Statistics, 16(2):117–186, 1945. URL: http://www.
jstor.org/stable/2235829.

[Wal47] Abraham Wald. Sequential Analysis. Wiley and Sons, 1947. URL: http:
//www.getcited.org/pub/101175034.

[WG86] George Barrie Wetherill and Kevin D. Glazebrook. Sequential Methods
in Statistics (3rd Edition). Chapman and Hall, 1986. URL: http:
//eprints.lancs.ac.uk/47982/.

[WLTB11] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved
Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. In
ASIACCS, pages 1–9, 2011. doi:10.1145/1966913.1966915.

[WLW15] Wei Wei, Mingjie Liu, and Xiaoyun Wang. Finding shortest lattice vectors
in the presence of gaps. In CT-RSA, pages 239–257, 2015. doi:10.1007/
978-3-319-16715-2_13.

[WW48] Abraham Wald and Jacob Wolfowitz. Optimum character of the sequential
probability ratio test. The Annals of Mathematical Statistics, 19(3):326–
339, 1948. doi:10.1214/aoms/1177730197.

[ZPH13] Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm
for the shortest vector problem. In SAC, pages 29–47, 2013. doi:10.
1007/978-3-662-43414-7_2.

http://dx.doi.org/10.1145/2488608.2488653
http://dx.doi.org/10.1145/2488608.2488653
http://www.cs.bris.ac.uk/home/csjhvdp/
http://www.cs.bris.ac.uk/home/csjhvdp/
http://dx.doi.org/10.1007/978-3-642-45239-0_17
http://dx.doi.org/10.1007/978-3-642-45239-0_17
http://www.ed.nl/mening/opinie-laatste-trein-om-kinderbedtijd-1.3309468
http://www.ed.nl/mening/opinie-laatste-trein-om-kinderbedtijd-1.3309468
http://dx.doi.org/10.6100/IR773277
http://escholarship.org/uc/item/4zt7x45z
http://www.jstor.org/stable/2235829
http://www.jstor.org/stable/2235829
http://www.getcited.org/pub/101175034
http://www.getcited.org/pub/101175034
http://eprints.lancs.ac.uk/47982/
http://eprints.lancs.ac.uk/47982/
http://dx.doi.org/10.1145/1966913.1966915
http://dx.doi.org/10.1007/978-3-319-16715-2_13
http://dx.doi.org/10.1007/978-3-319-16715-2_13
http://dx.doi.org/10.1214/aoms/1177730197
http://dx.doi.org/10.1007/978-3-662-43414-7_2
http://dx.doi.org/10.1007/978-3-662-43414-7_2

0
0
1
1
1
0
1
1
1
1
0
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0

1
0
0
1
1
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
1
0
1

0
1
1
1
0
0
1
0
1
1
1
1
1
1
1
0
1
0
1
0
0
1
0
0
1
0
0
1
0
1
1
0
0
0
1
1
0
1
0
1

0
0
1
0
1
1
1
1
0
1
0
0
0
0
1
0
1
1
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
1
0
1

1
1
1
0
0
1
1
1
1
0
1
0
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1
0
1
1
0
0
1
1
0
0
0
0

0
1
1
1
0
0
1
0
1
1
1
1
0
1
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
1
0
1

0
0
1
1
1
0
0
1
0
1
0
0
1
1
1
1
1
0
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
1

1
0
1
1
1
1
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
1
1
0
1

0
1
1
1
0
1
1
1
1
0
0
1
0
1
1
1
1
1
1
1
1
0
0
1
0
1
1
0
0
1
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0

1
0
0
0
0
1
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
0
0
1

0
1
1
0
0
0
1
1
1
0
0
1
0
1
1
0
0
0
1
1
0
0
0
1
1
0
1
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
1

0
0
1
1
1
1
1
1
0
0
0
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

0
1
0
1
0
1
1
1
1
1
1
1
0
1
1
1
0
0
1
0
1
0
1
0
0
0
0
1
0
1
1
0
0
0
1
1
0
1
0
0

0
1
0
1
1
0
1
1
1
1
0
1
1
0
0
0
1
1
0
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

1
1
0
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1

1
0
1
1
1
1
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
1
0
0
0
1
1
0
0
0
1

1
0
0
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
0
1
0
0

1
1
1
0
0
1
1
1
0
0
0
0
1
1
0
0
1
1
1
1
0
0
1
0
1
1
1
0
0
0
0
0
1
0
1
1
0
0
1
1
0
1
1
0

1
0
1
1
0
0
0
1
0
0
1
0
0
0
1
1
0
0
0
0
0
1
1
0
1
0
0
0
1
1
0
1
0
1

1
0
0
1
0
1
0
1
1
0
0
1
1
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0

0
1
1
1
0
0
1
1
1
0
1
1
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
1
0
0

1
1
1
0
1
1
0
0
1
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
1
1
0
1
1
0
0
0
1
1
0
0
0
1

0
1
0
1
0
1
1
0
0
1
1
1
0
1
1
0
0
0
1
0
1
0
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
1

1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
1
0
1
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0

0
1
0
0
1
0
1
1
0
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
0
0

1
0
0
1
1
1
1
0
1
0
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
0
0
0
1
1
0
1
1
1

0
0
1
1
1
1
1
1
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0

1
0
1
0
0
1
0
0
1
0
1
1
1
1
1
1
0
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0

0
0
1
1
1
0
0
1
0
1
1
0
1
0
1
1
1
0
0
1
1
0
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
0
0
0

1
1
0
0
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
0
0
1
1
1
1
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0

1
1
1
0
0
1
0
1
0
1
1
0
1
1
1
0
0
1
1
0
1
0
1
1
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
0
0
1

1
1
1
1
0
1
1
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
1
0
1

0
1
1
1
0
1
1
1
1
0
0
1
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
1

1
0
0
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
1

1
1
0
0
1
0
1
1
1
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
0

1
1
1
1
1
1
1
0
1
1
1
0
1
0
0
0
0
0
1
0
1
1
0
0
0
1
1
0
0
0
1

0
0
1
0
1
1
1
1
1
1
1
1
0
0
1
0
1
1
0
0
1
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

0
1
0
1
1
0
1
0
1
1
0
1
0
1
1
1
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
1
0
1

1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0

0
1
1
1
0
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
0

0
1
0
1
0
0
1
0
1
1
0
1
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
1

1
1
0
0
1
0
0
0
1
1
1
0
0
1
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

1
1
0
1
1
0
1
0
1
1
1
1
0
1
0
1
0
0
0
1
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1

1
0
1
1
0
1
1
0
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
1
0
1
1
1
0
0
0
1
1
0
0
0
1

1
0
1
0
0
1
0
0
1
1
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
0
0
0
1

1
0
0
1
1
1
0
1
0
1
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
1
0
0
0
1
1

1
1
1
0
1
1
0
0
1
0
0
0
1
0
0
0
0
1
1
1
0
0
0
1
0
1
1
1
1
1
0
0
0
1
1
0
1
0
0

1
1
0
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
1
1
0
1
1
0
0
0
1
1
0
0
0
1

0
0
1
1
1
0
0
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
0
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
0
1

0
0
1
1
1
0
0
1
0
1
0
0
1
0
1
1
0
1
1
1
1
0
1
0
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
1
1
1

1
0
0
1
0
1
0
1
1
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

1
1
0
0
1
0
1
1
1
1
1
0
0
1
1
0
1
0
0
1
0
0
1
0
1
1
0
0
0
1
1
0
0
0
0

0
1
1
1
0
0
1
1
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

1
0
1
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
0
1
0
0

1
0
0
1
1
1
0
1
1
0
1
1
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
0
1

1
1
0
1
1
0
1
1
1
1
1
0
1
1
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
1
1
0
0
0
1

0
1
1
1
0
0
1
0
1
1
0
1
1
1
1
0
1
0
1
0
0
1
0
1
1
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1

1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
0
1
1
0
1
0
0
0
1
1
0
0
0
0

1
0
1
0
1
1
1
0
0
1
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
1

0
1
1
1
0
0
1
1
1
0
0
1
1
0
1
1
1
1
1
1
0
0
0
1
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0

1
0
1
1
0
0
1
0
1
1
1
1
0
0
0
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
0
0
1
0
0
0
1

0
1
1
1
1
0
1
0
1
1
0
1
0
1
1
0
1
0
1
0
0
0
0
0
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1

1
1
1
0
0
1
1
1
0
1
1
1
0
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
1
1
0
0
0
1

1
1
0
1
1
0
0
1
0
1
0
1
1
0
0
1
1
0
1
1
0
0
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
0

1
1
1
0
0
1
0
1
1
0
1
1
1
0
1
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
1

0
1
0
0
0
0
0
0
1
1
1
0
1
0
1
1
1
1
0
0
1
0
0
0
1
0
1
0
0
0
1
1
0
1
0
0

0
0
1
1
1
0
0
1
0
1
1
0
1
1
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
0
0
0
0

0
1
1
1
0
0
1
0
1
0
0
1
0
1
1
1
0
1
1
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1

0
1
1
0
1
0
1
0
1
0
0
1
1
1
0
1
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0

0
1
0
1
1
1
1
0
1
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
0
1
0
0

1
1
1
1
1
1
1
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
1
0
0
0
1

1
1
0
1
1
1
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
1

0
0
1
0
1
1
1
1
1
1
1
0
0
0
1
0
1
1
1
0
0
0
0
1
1
0
1
0
0
0
1
1
0
0
0
1

1
0
0
1
1
1
1
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
0
0
0

1
0
1
0
1
0
1
0
0
1
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
1
1
0
0
0
1

0
0
1
1
1
0
1
1
1
1
1
0
1
1
1
0
1
0
0
0
1
0
1
0
0
1
0
0
1
0
1
1
0
0
0
1
1
0
1
0
0

1
0
1
1
0
1
0
1
1
1
1
1
0
0
0
1
1
1
0
0
1
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1

0
0
1
1
1
0
0
1
0
0
1
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
1
0
0

1
0
0
1
0
1
0
0
1
0
1
1
0
1
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
1
0
0

0
0

0

0

0

0

0

0
0

0
0

0
0
0
0

0
0
0

0
0
0

	Official
	Acknowledgments
	Contents
	Introduction
	I Finding colluders in fingerprinting
	1 Collusion-resistant fingerprinting codes
	1.1 Problem description
	1.2 The bias-based framework
	1.3 Searching for two colluders
	1.4 Searching for more colluders
	1.5 Research questions and outline

	2 Limitations of symmetric decoding
	2.1 Overview
	2.2 Bias distributions in the symmetric Tardos scheme
	2.3 Discrete Gauss–Legendre distributions
	2.4 Discrete arcsine distributions
	2.5 Estimating code lengths

	3 Non-adaptive fingerprinting capacities
	3.1 Overview
	3.2 Simple capacities
	3.3 Joint capacities
	3.4 Arbitrary attacks

	4 Non-adaptive decoding schemes
	4.1 Overview
	4.2 Simple decoders
	4.3 Joint decoders
	4.4 Arbitrary attacks

	5 Sequential decoding schemes
	5.1 Overview
	5.2 The sequential Tardos scheme
	5.3 The sequential Wald scheme
	5.4 Tardos vs. Wald: A comparison

	6 Applications in group testing
	6.1 Overview
	6.2 Non-adaptive group testing capacities
	6.3 Non-adaptive decoding schemes
	6.4 Sequential decoding schemes

	7 Conclusions and open problems

	II Finding nearby vectors in lattice sieving
	8 Sieving for shortest vectors in lattices
	8.1 Problem description
	8.2 The sieving framework
	8.3 Searching for nearby vectors
	8.4 Research questions and outline

	9 Limitations of leveled sieving
	9.1 Overview
	9.2 The 1-level sieve of Nguyen and Vidick
	9.3 The 2-level sieve of Wang–Liu–Tian–Bi
	9.4 The 3-level sieve of Zhang–Pan–Hu
	9.5 High-level sieving

	10 Hyperplane locality-sensitive hashing
	10.1 Overview
	10.2 The locality-sensitive hashing (LSH) framework
	10.3 Hyperplane locality-sensitive hashing
	10.4 The Nguyen–Vidick sieve with hyperplane LSH
	10.5 The GaussSieve with hyperplane LSH

	11 Hypercone locality-sensitive hashing
	11.1 Overview
	11.2 Hypercone locality-sensitive hashing
	11.3 The Nguyen–Vidick sieve with hypercone LSH
	11.4 The GaussSieve with hypercone LSH

	12 Cross-polytope locality-sensitive hashing
	12.1 Overview
	12.2 Cross-polytope locality-sensitive hashing
	12.3 The Nguyen–Vidick sieve with cross-polytope LSH
	12.4 The GaussSieve with cross-polytope LSH
	12.5 The ideal GaussSieve with cross-polytope LSH

	13 Hypercone locality-sensitive filtering
	13.1 Overview
	13.2 The locality-sensitive filtering (LSF) framework
	13.3 Hypercone locality-sensitive filtering
	13.4 The Nguyen–Vidick sieve with hypercone LSF
	13.5 The GaussSieve with hypercone LSF

	14 Effects of quantum search
	14.1 Overview
	14.2 Quantum search speed-ups for sieving
	14.3 Other algorithms

	15 Conclusions and open problems

	Summary
	Curriculum Vitae
	Bibliography

